Featured Research

from universities, journals, and other organizations

Nanoparticles may increase plant DNA damage, new evidence shows

Date:
April 18, 2012
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have provided the first evidence that engineered nanoparticles are able to accumulate within plants and damage their DNA. Under laboratory conditions, cupric oxide nanoparticles have the capacity to enter plant root cells and generate many mutagenic DNA base lesions.

Graphic showing that increasing exposure to cupric oxide bulk particles (BPs) and nanoparticles (NPs) by radish plants also increases the impact on growth with NPs showing the largest impact. From left to right, the exposure concentrations are 0; 100 parts per million (ppm) BPs; 1,000 ppm BPs; 100 ppm NPs; and 1,000 ppm NPs (showing a severely stunted plant).
Credit: H. Wang, US Environmental Protection Agency

Researchers at the National Institute of Standards and Technology (NIST) and the University of Massachusetts Amherst (UMass) have provided the first evidence that engineered nanoparticles are able to accumulate within plants and damage their DNA. In a recent paper, the team led by NIST chemist Bryant C. Nelson showed that under laboratory conditions, cupric oxide nanoparticles have the capacity to enter plant root cells and generate many mutagenic DNA base lesions.

The team tested the human-made, ultrafine particles between 1 and 100 nanometers in size on a human food crop, the radish, and two species of common groundcovers used by grazing animals, perennial and annual ryegrass. This research is part of NIST's work to help characterize the potential environmental, health and safety (EHS) risks of nanomaterials, and develop methods for identifying and measuring them.

Cupric oxide (also known as copper (II) oxide or CuO) is a compound that has been used for many years as a pigment for coloring glass and ceramics, as a polish for optics, and as a catalyst in the manufacture of rayon. Cupric oxide also is a strong conductor of electric current, a property enhanced at the nanoscale level, which makes the nanoparticle form useful to semiconductor manufacturers.

Because cupric oxide is an oxidizing agent -- a reactive chemical that removes electrons from other compounds -- it may pose a risk. Oxidation caused by metal oxides has been shown to induce DNA damage in certain organisms. What Nelson and his colleagues wanted to learn was whether nanosizing cupric oxide made the generation and accumulation of DNA lesions more or less likely in plants. If the former, the researchers also wanted to find out if nanosizing had any substantial effects on plant growth and health.

To obtain the answers, the NIST/UMass researchers first exposed radishes and the two ryegrasses to both cupric oxide nanoparticles and larger sized cupric oxide particles (bigger than 100 nanometers) as well as to simple copper ions. They then used a pair of highly sensitive spectrographic techniques* to evaluate the formation and accumulation of DNA base lesions and to determine if and how much copper was taken up by the plants.

For the radishes, twice as many lesions were induced in plants exposed to nanoparticles as were in those exposed to the larger particles. Additionally, the cellular uptake of copper from the nanoparticles was significantly greater than the uptake of copper from the larger particles. The DNA damage profiles for the ryegrasses differed from the radish profiles, indicating that nanoparticle-induced DNA damage is dependent on the plant species and on the nanoparticle concentration.

Finally, the researchers showed that cupric oxide nanoparticles had a significant effect on growth, stunting the development of both roots and shoots in all three plant species tested. The nanoparticle concentrations used in this study were higher than those likely to be encountered by plants under a typical soil exposure scenario.

"To our knowledge, this is first evidence that there could be a 'nano-based effect' for cupric oxide in the environment where size plays a role in the increased generation and accumulation of numerous mutagenic DNA lesions in plants," Nelson says.

Next up for Nelson and his colleagues is a similar study looking at the impact of titanium dioxide nanoparticles -- such as those used in many sunscreens -- on rice plants.

* Gas chromatography-mass spectrometry (GC-MS) to detect base lesions and inductively coupled plasma mass spectrometry (ICP-MS) to measure copper uptake.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Donald H. Atha, Huanhua Wang, Elijah J. Petersen, Danielle Cleveland, R. David Holbrook, Pawel Jaruga, Miral Dizdaroglu, Baoshan Xing, Bryant C. Nelson. Copper Oxide Nanoparticle Mediated DNA Damage in Terrestrial Plant Models. Environmental Science & Technology, 2012; 46 (3): 1819 DOI: 10.1021/es202660k

Cite This Page:

National Institute of Standards and Technology (NIST). "Nanoparticles may increase plant DNA damage, new evidence shows." ScienceDaily. ScienceDaily, 18 April 2012. <www.sciencedaily.com/releases/2012/04/120418143801.htm>.
National Institute of Standards and Technology (NIST). (2012, April 18). Nanoparticles may increase plant DNA damage, new evidence shows. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2012/04/120418143801.htm
National Institute of Standards and Technology (NIST). "Nanoparticles may increase plant DNA damage, new evidence shows." ScienceDaily. www.sciencedaily.com/releases/2012/04/120418143801.htm (accessed August 30, 2014).

Share This




More Plants & Animals News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Raw: Australian Sheep Gets Long Overdue Haircut

Raw: Australian Sheep Gets Long Overdue Haircut

AP (Aug. 28, 2014) Hoping to break the record for world's wooliest, Shaun the sheep came up 10 pounds shy with his fleece weighing over 50 pounds after being shorn for the first time in years. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Huge Ancient Wine Cellar Found In Israel

Huge Ancient Wine Cellar Found In Israel

Newsy (Aug. 28, 2014) An international team uncovered a large ancient wine celler that likely belonged to a Cannonite ruler. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins