Featured Research

from universities, journals, and other organizations

It's the network: Ever wonder why your friends have more friends than you or diamond is harder than graphite?

Date:
April 19, 2012
Source:
Northwestern University
Summary:
Networks governing processes in nature and society are becoming increasingly amenable to modeling, forecast and control. A new article establishes relationships between seemingly disparate topics such as the friendship paradox -- by which our friends have on average more friends than we do -- and why carbon can result in a hard diamond or the softer material graphite.

A new article by a Northwestern University complex networks expert discusses how networks governing processes in nature and society are becoming increasingly amenable to modeling, forecast and control.

The article establishes relationships between seemingly disparate topics such as the friendship paradox -- by which our friends have on average more friends than we do -- and why carbon can result in a hard diamond or the softer material graphite.

"Many broadly significant scientific questions, ranging from self-organization and information flow to systemic robustness, can now be properly formalized within the emerging theory of networks," said Adilson E. Motter, the Harold H. and Virginia Anderson Professor of Physics and Astronomy at Northwestern's Weinberg College of Arts and Sciences. "I was thus humbled to be invited to write such a timely piece."

Motter is first author of the article "Networks in Motion," published last week as the cover story in Physics Today, the membership journal of the American Institute of Physics. His co-author is Réka Albert, professor of physics and biology at Penn State University.

The authors argue that, as network research matures, there will be increasing opportunities to exploit network concepts to also engineer new systems with desirable properties that may not be readily available in existing ones. Examples include emerging areas such as synthetic biology and microfluidics, which could be radically changed by rational circuit design, but also established areas such as traffic and materials research.

Motter and Albert consider the problem of network control, particularly in the context of biological networks as a promising new avenue for disease treatment. Cascading processes, in particular, in which successive elements in a complex network fail, are shown to be not as unstoppable as previously thought.

They also discuss at length how collective behavior may depend on properties of the underlying network, even when composed of the exact same nodes -- as in the case of radically different materials made of the same chemical element.

By and large, the recent study of complex systems has been centered on the identification and analysis of network features relevant to a particular phenomenon of interest, ultimately reducing complexity. But, the authors ask, with so many conceivable possibilities, what if one simply fails to look for the right features? Researchers have been thinking about this, too, and, as a result, exploratory methods are now being devised to identify patterns not anticipated by pre-conceptions.

One such method mentioned in the article aims at resolving the internal structure of complex networks by organizing the nodes into groups that share something in common, even if researchers do not know a priori what that thing is.

"This is, of course, only the very tip of the iceberg," Motter said. "A broader undertaking concerns the development of similar exploratory approaches that can also systematically account for network dynamics, which remains widely unexplored."


Story Source:

The above story is based on materials provided by Northwestern University. The original article was written by Megan Fellman. Note: Materials may be edited for content and length.


Journal Reference:

  1. Adilson E. Motter, Réka Albert. Networks in motion. Physics Today, 2012; 65 (4): 43 DOI: 10.1063/PT.3.1518

Cite This Page:

Northwestern University. "It's the network: Ever wonder why your friends have more friends than you or diamond is harder than graphite?." ScienceDaily. ScienceDaily, 19 April 2012. <www.sciencedaily.com/releases/2012/04/120419091225.htm>.
Northwestern University. (2012, April 19). It's the network: Ever wonder why your friends have more friends than you or diamond is harder than graphite?. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/04/120419091225.htm
Northwestern University. "It's the network: Ever wonder why your friends have more friends than you or diamond is harder than graphite?." ScienceDaily. www.sciencedaily.com/releases/2012/04/120419091225.htm (accessed July 23, 2014).

Share This




More Computers & Math News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Google Plans To Speed Up Web Pages With New Image Format

Google Plans To Speed Up Web Pages With New Image Format

Newsy (July 21, 2014) — Google is using compressed images in WebP format to help boost page loading times. The files are 25-to-34 percent smaller than PNGs and JPEGs. Video provided by Newsy
Powered by NewsLook.com
Uruguayan Creates Chess Game for Multiple Opponents

Uruguayan Creates Chess Game for Multiple Opponents

AFP (July 19, 2014) — It no longer takes two to play chess – or at least according to a new version of the game invented by Uruguayan Gabriel Baldi, where up to four opponents can play. Duration: 00:31 Video provided by AFP
Powered by NewsLook.com
Clock Ticks Down on Internet Speed Debate

Clock Ticks Down on Internet Speed Debate

Reuters - US Online Video (July 18, 2014) — The FCC received more than 800,000 comments on whether and how internet speeds should be regulated, even crashing its system. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Google Won't Call Games With In-App Add-Ons Free, Apple Will

Google Won't Call Games With In-App Add-Ons Free, Apple Will

Newsy (July 18, 2014) — The European Commission asked Google and Apple not to label apps "free" if they include in-app purchases. Google has complied; Apple has resisted. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins