Featured Research

from universities, journals, and other organizations

Watching neurons learn

Date:
April 25, 2012
Source:
Université de Genève
Summary:
Learning novel associations between sensory stimuli and adequate motor actions is key to many aspects of our daily lives. A new study has opened a novel window on the neuronal circuits involved. The researchers followed optically the same group of neurons during many days of learning.

What happens at the level of individual neurons while we learn? This question intrigued the neuroscientist Daniel Huber, who recently arrived at the Department of Basic Neuroscience at the UNIGE. During his stay in the United States, he and his team tried to unravel the network mechanisms underlying learning and memory at the level of the cerebral cortex.

What's the role of individual neurons in behavior? Do they always participate in the same functions? How do their responses evolve during learning?" asks the professor. One way to address these questions is to follow the activity of a large set of neurons while the subject learns a novel task. The goal is to link the behavioral changes with the changes in neuronal representations.

Focus on mice

It's currently impossible to follow the activity of a large number of individual neurons in humans, but the team of researchers quickly realized that mice are excellent subjects for such studies. "We were surprised by capacities of these small rodents. They learn novel associations quickly and are able to focus for hours on complex behavioral tasks. However, it is important to keep them motivated by rewarding them accordingly. They are very similar to us in that way."

The behavioral task of the mice consisted in sampling the area in front of their snout with their whiskers to search for a small object. The object was presented either within reach and out of reach of their whiskers. Each time the object was detected with the whiskers, the mouse had to respond by licking to a reward spout. The correct choices were rewarded with a drop of liquid. "In this task different sensory and motor circuits have to interact in order to establish a novel association, leading to better and better performance."

Remained the problem of how to follow the activity of the large number of neurons across many days of learning. The researchers replaced a small part of the bone overlying motor cortex with a tiny glass window. The neurons underneath the window were genetically modified to express a fluorescent marker which changes its intensity according to the activity of the neurons. This window into the brain allowed the researches around Daniel Huber to use two-photon microscopy to record the activity of the same set of 500 neurons during days of learning.

"We then correlated the activity of the individual neurons with the different actions of the mouse, such as moving the whiskers, touching the object or licking at the right moment. It's like synchronizing the soundtrack with the images in a movie" adds the neuroscientist. The researchers analyzed this data using a series of computational approaches to establish a link between the neuronal activity and the different sensory and motor features of the task. This allowed them to build algorithmic models that can predict different motor outputs by solely monitoring the neuronal activity. Decoding the neuronal activity allowed the researchers then to construct functional maps of the recorded neurons and quantify each neuron's link with the different aspects of the behavior.

These functional maps revealed several fundamental findings: "Although the movements of the whiskers became more and more precise and targeted to search for the object during the learning, their relative neuronal representation remained relatively stable. In contrast, the representation of licking to respond and collect the rewards became more and more pronounced." Taken together, only selected aspects of the learned behavior induced changes it the neuronal representation in the cortex. The scientists also found that different sensory and motor representations are spatially intermingled in the rodent brain.

Other analysis revealed that individual neurons remain stably linked to a given behavioral function, but they have a flexibility to remain silent on a given day. This functional stability despite a flexibility to join (or not) a given representation was actually suggested by different theoretical work on learning.

"If these characteristics are limited to the motor cortex or if these are more general rules that are apply across the cerebral cortex remains open" says Daniel Huber. That in fact this is one of the questions we are currently investigating in my lab in Geneva."


Story Source:

The above story is based on materials provided by Université de Genève. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Huber, D. A. Gutnisky, S. Peron, D. H. O’Connor, J. S. Wiegert, L. Tian, T. G. Oertner, L. L. Looger, K. Svoboda. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature, 2012; 484 (7395): 473 DOI: 10.1038/nature11039

Cite This Page:

Université de Genève. "Watching neurons learn." ScienceDaily. ScienceDaily, 25 April 2012. <www.sciencedaily.com/releases/2012/04/120425140357.htm>.
Université de Genève. (2012, April 25). Watching neurons learn. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2012/04/120425140357.htm
Université de Genève. "Watching neurons learn." ScienceDaily. www.sciencedaily.com/releases/2012/04/120425140357.htm (accessed October 22, 2014).

Share This



More Health & Medicine News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) — The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) — Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) — A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) — The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins