Featured Research

from universities, journals, and other organizations

Why underweight babies become obese: Study says disrupted hypothalamus is to blame

Date:
May 2, 2012
Source:
University of California, Los Angeles (UCLA), Health Sciences
Summary:
A new animal model study has found that in low–birth-weight babies whose growth was restricted in the womb, the level of appetite-producing neuropeptides in the brain's hypothalamus — the central control of the appetite — is higher, resulting in a natural tendency among these children to consume more calories.

It seems improbable that a baby born underweight would be prone to obesity, but it is well documented that these children tend to put on weight in youth if they're allowed free access to calories. Now, researchers believe they understand why this happens.

A new animal model study at UCLA has found that in low-birth-weight babies whose growth was restricted in the womb, the level of appetite-producing neuropeptides in the brain's hypothalamus -- the central control of the appetite -- is higher, resulting in a natural tendency among these children to consume more calories.

"Other studies have shown that neuronal processes that signal the brain to eat were wired differently in the hypothalamus if a hormonal gene, such as leptin, was missing," said the study's lead author, Dr. Sherin Devaskar, professor of pediatrics and executive chair of the department of pediatrics at Mattel Children's Hospital UCLA. "What we found is that appetite-producing genes in the hypothalamus are completely programmed toward eating more to make up for the relative decrease in nutrition while in the womb. So the natural tendency for a child born with low birth weight is to eat more and try to catch up in growth. But if this is not curbed, it can result in childhood obesity."

The findings appear in the June issue of the Journal of Neuroscience Research and are currently available online.

The study was undertaken in rodent models that mimicked small human babies. This was accomplished by reducing rodent mothers' intake of calories, which in turn led to the birth of small, low-birth-weight and growth-restricted babies. The rodent babies were then examined at an early age to see how much milk they consumed and to monitor their energy expenditure. In addition, the researchers examined the effect that being growth-restricted in the womb had on hypothalamic neuropeptides that control appetite when the babies were weaned.

The researchers observed that those neuropeptides that bring increased appetite with decreased energy expenditure were increased in the hypothalamus, while the neuropeptides that reduce appetite and increase energy expenditure were decreased. Therefore, the homeostatic balance of appetite-controlling neuropeptides was disrupted. The hypothalamus was poised to consume as many calories as were available, with no sense of satisfaction.

These findings expand on recent research published by Devaskar and colleagues in the June issue of the journal Diabetes, which found that if small babies are placed on a diet of moderately regulated calories during infancy, their propensity to become obese decreases. Because this was an early animal study, the UCLA researchers do not recommend that mothers of low-birth-weight infants start restricting their children's nutrition and suggest they consult with a pediatrician regarding any feeding questions.

About 10 percent of babies in the United States are born "small" -- defined as less than the 10th percentile by weight for a given gestation period. Some organizations define low birth weight as less than 2,500 grams -- or 5 pounds, 5 ounces -- at term.

Low birth weight can be caused by malnutrition due to a mother's homelessness or hunger or her desire not to gain too much weight during pregnancy. Additional causes include illness or infection, a reduction in placental blood, smoking, or use of alcohol or drugs during pregnancy.

Growth restriction before birth may cause lasting changes in genes in certain insulin-sensitive organs like the pancreas, liver and skeletal muscle. Before birth, these changes may help the malnourished fetus use all available nutrients. After birth, however, these changes may contribute to health problems such as obesity and diabetes.

Devaskar said the next phase of research will look at an intervention to reverse the hypothalamic neuropeptide changes that cause the central control of appetite to be set too high.

The study was funded by the National Institutes of Health.

In addition to Devaskar, the study was conducted by a team of UCLA researchers that included Bo-Chul Shin, Yun Dai, Manikkavasagar Thamotharan and L. Caroline Gibson.


Story Source:

The above story is based on materials provided by University of California, Los Angeles (UCLA), Health Sciences. The original article was written by Amy Albin. Note: Materials may be edited for content and length.


Journal Reference:

  1. Bo-Chul Shin, Yun Dai, Manikkavasagar Thamotharan, L. Caroline Gibson, Sherin U. Devaskar. Pre- and postnatal calorie restriction perturbs early hypothalamic neuropeptide and energy balance. Journal of Neuroscience Research, 2012; 90 (6): 1169 DOI: 10.1002/jnr.23013

Cite This Page:

University of California, Los Angeles (UCLA), Health Sciences. "Why underweight babies become obese: Study says disrupted hypothalamus is to blame." ScienceDaily. ScienceDaily, 2 May 2012. <www.sciencedaily.com/releases/2012/05/120502162523.htm>.
University of California, Los Angeles (UCLA), Health Sciences. (2012, May 2). Why underweight babies become obese: Study says disrupted hypothalamus is to blame. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/05/120502162523.htm
University of California, Los Angeles (UCLA), Health Sciences. "Why underweight babies become obese: Study says disrupted hypothalamus is to blame." ScienceDaily. www.sciencedaily.com/releases/2012/05/120502162523.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins