Featured Research

from universities, journals, and other organizations

Waking chick embryos before they are born

Date:
May 3, 2012
Source:
Cell Press
Summary:
Under some conditions, the brains of embryonic chicks appear to be awake well before those chicks are ready to hatch out of their eggs. That's according to an imaging study in which researchers woke chick embryos inside their eggs by playing loud, meaningful sounds to them. Playing meaningless sounds to the embryos wasn't enough to rouse their brains.

This image shows an X-ray computed-tomography image of the chicken embryo skeleton inside an egg, which shows the developmental stage, together with a positron emission tomography image showing nervous system activity in the brain. Balaban et al., publishing in Current Biology, report the activity in chicken embryo brains is inversely related to behavioral activity, with different sleep-like states emerging for the first time. Playing meaningful sounds selectively induced patterns of embryonic brain activity similar to awake, post-hatching animals. Image 3D rendering by Carmen Garcνa-Villalba.
Credit: Balaban et al. Current Biology

Under some conditions, the brains of embryonic chicks appear to be awake well before those chicks are ready to hatch out of their eggs. That's according to an imaging study published online on May 3 in Current Biology, a Cell Press publication, in which researchers woke chick embryos inside their eggs by playing loud, meaningful sounds to them. Playing meaningless sounds to the embryos wasn't enough to rouse their brains.

The findings may have implications not only for developing chicks and other animals, but also for prematurely born infants, the researchers say. Pediatricians have worried about the effects of stimulating brains that are still under construction, especially as modern medicine continues to push back the gestational age at which preemies can reliably survive.

"This work showed that embryo brains can function in a waking-like manner earlier than previously thought -- well before birth," said Evan Balaban of McGill University. "Like adult brains, embryo brains also have neural circuitry that monitors the environment to selectively wake the brain up during important events."

That waking-like brain activity appears in a latent but inducible state during the final 20 percent of embryonic life, the researchers found. At that point, sleep-like brain activity patterns also emerge.

Before that major dividing line in development -- for the first 80 percent of embryonic life -- "embryos are in a state that is neither like sleep nor waking," Balaban said. He suggests it may be useful to compare that state to what happens when people are comatose or under the influence of anesthesia.

This entire line of work was made possible by a new generation of molecular brain imagers developed by Balaban's coauthors Juan-Josι Vaquero and Manuel Desco at the Universidad Carlos III in Madrid. Those state-of-the art machines can detect very small amounts of tracer molecules and pinpoint them to a tiny region of the brain (about 0.7 mm, or less than 3/100ths of an inch).

The researchers say they were surprised to capture waking-like activity before birth. And there were other surprises, too. The embryo brains they observed showed considerable variation in activity, for one.

Before the emergence of sleep and waking patterns of brain activity, the chick embryos in their study exhibited lots of spontaneous movement, even as their higher-brain regions remained inactive. Once the chicks reached that 80 percent mark in development, higher-brain regions began crackling with activity. At the same time, those physical movements ceased as the embryos entered a sleep-like state.

"The last 30 percent of fetal brain development is a more interesting time than we previously thought, because it's when complex whole-brain functions that depend on coordination of widely separated brain areas first emerge," Balaban said. "Embryos begin to cycle through a variety of brain states and are even capable of showing waking-like brain activity."

That might explain instances of complex fetal and early neonatal learning. "It also raises questions about the longer-term developmental consequences that such brain activity may have, if it is induced before intrinsic brain wiring is sufficiently completed," Balaban said, "for example, in babies born very prematurely. We are excited by the possibility that the techniques developed here can now be used to provide answers to these questions."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Evan Balaban, Manuel Desco, Juan-Josι Vaquero. Waking-like Brain Function in Embryos. Current Biology, 2012; DOI: 10.1016/j.cub.2012.03.030

Cite This Page:

Cell Press. "Waking chick embryos before they are born." ScienceDaily. ScienceDaily, 3 May 2012. <www.sciencedaily.com/releases/2012/05/120503125806.htm>.
Cell Press. (2012, May 3). Waking chick embryos before they are born. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2012/05/120503125806.htm
Cell Press. "Waking chick embryos before they are born." ScienceDaily. www.sciencedaily.com/releases/2012/05/120503125806.htm (accessed August 30, 2014).

Share This




More Mind & Brain News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) — Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) — A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com
Electrical Stimulation Boosts Brain Function, Study Says

Electrical Stimulation Boosts Brain Function, Study Says

Newsy (Aug. 29, 2014) — Researchers found an improvement in memory and learning function in subjects who received electric pulses to their brains. Video provided by Newsy
Powered by NewsLook.com
Treadmill 'trips' May Reduce Falls for Elderly

Treadmill 'trips' May Reduce Falls for Elderly

AP (Aug. 28, 2014) — Scientists are tripping the elderly on purpose in a Chicago lab in an effort to better prevent seniors from falling and injuring themselves in real life. (Aug.28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins