Featured Research

from universities, journals, and other organizations

Screening for breast cancer without X-rays: Lasers and sound merge in promising diagnostic technique

Date:
May 7, 2012
Source:
Optical Society of America
Summary:
In the first phase of clinical testing of a new imaging device, researchers in the Netherlands used photoacoustics rather than ionizing radiation to detect and visualize breast tumors. The team's preliminary results, which were conducted on 12 patients with diagnosed malignancies, have just been published.

Diagnostic images of a mixed infiltrating lobular and ductal carcinoma in the right breast of a 57 year old patient. The cranio-caudal x-ray mammogram (left) showed an architectural distortion of about 22 mm in the lateral part of the right breast. Ultrasonography (middle) showed the presence of an unsharply edged hypoechoic lesion with a hyperechoic border at the expected locationPhotoacoustic mammography (right) showed a confined high-contrast abnormality with a contrast in excess of 5 and a maximum diameter of 14 mm at the expected lesion depth. Here, a transversal cross-section through this abnormality is visualized.
Credit: Image courtesy of Michelle Heijblom, University of Twente

X-ray mammography is an important diagnostic tool in the fight against breast cancer, but it has certain drawbacks that limit its effectiveness. For example, it can give in false positive and negative results; it also exposes women to low doses of ionizing radiation, which -- while accepted as safe -- still carry some risk.

Related Articles


In the first phase of clinical testing of a new imaging device, researchers from Netherlands' University of Twente and Medisch Spectrum Twente Hospital in Oldenzaal used photoacoustics -- light-induced sound -- rather than ionizing radiation to detect and visualize breast tumors. The team's preliminary results, which were conducted on 12 patients with diagnosed malignancies and reported today in the Optical Society's (OSA (http://www.osa.org)) open-access journal Optics Express (http://www.opticsinfobase.org/oe), provide proof-of-concept support that the technology can distinguish malignant tissue by providing high-contrast images of tumors.

"While we're very early in the development of this new technology, it is promising. Our hope is that these early results will one day lead to the development of a safe, comfortable, and accurate alternative or adjunct to conventional techniques for detecting breast tumors," explained researcher Michelle Heijblom, a Ph.D. student at the University of Twente.

Photoacoustics, a hybrid optical and acoustical imaging technique, builds on the established technology of using red and infrared light to image tissue and detect tumors. This technology, called optical mammography, reveals malignancies because blood hemoglobin readily absorbs the longer, redder wavelengths of light, which reveals a clear contrast between blood-vessel dense tumor areas and normal vessel environments. However, it is difficult to target the specific area to be imaged with this approach.

As a means of improving this, the researchers combined the light-based system's ability to distinguish between benign and malignant tissue with ultrasound to achieve superior targeting ability. The result of their refinements is a specialized instrument, the Twente Photoacoustic Mammoscope (PAM), which was first tested in 2007.

The device is built into a hospital bed, where the patient lies prone and positions her breast for imaging. Laser light at a wavelength of 1,064 nanometers scans the breast. Because there is increased absorption of the light in malignant tissue the temperature slightly increases. With the rise in temperature, thermal expansion creates a pressure wave, which is detected by an ultrasound detector placed on one side of the breast. The resulting photoacoustic signals are then processed by the PAM system and reconstructed into images. These images reveal abnormal areas of high intensity (tumor tissue) as compared to areas of low intensity (benign tissue). This is one of the first times that the technique has been tested on breast cancer patients.

By comparing the photoacoustic data with conventional diagnostic X-rays, ultrasound imaging, MRI, and tissue exams, the researchers showed that malignancies produced a distinct photoacoustic signal that is potentially clinically useful for making a diagnosis of breast cancer. The team also observed that the photoacoustic contrast of the malignant tissue is higher than the contrast provided by the conventional X-ray mammographies.

In looking to the future, notes Heijblom, "PAM needs some technical improvements before it is a really valuable clinical tool for diagnosis or treatment of breast cancer. Our next step is to make those improvements and then evaluate less obvious potential tumors, benign lesions, and normal breasts with it."


Story Source:

The above story is based on materials provided by Optical Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, S. Manohar. Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements? Optics Express, 2012; 20 (11): 11582 DOI: 10.1364/OE.20.011582

Cite This Page:

Optical Society of America. "Screening for breast cancer without X-rays: Lasers and sound merge in promising diagnostic technique." ScienceDaily. ScienceDaily, 7 May 2012. <www.sciencedaily.com/releases/2012/05/120507141351.htm>.
Optical Society of America. (2012, May 7). Screening for breast cancer without X-rays: Lasers and sound merge in promising diagnostic technique. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/05/120507141351.htm
Optical Society of America. "Screening for breast cancer without X-rays: Lasers and sound merge in promising diagnostic technique." ScienceDaily. www.sciencedaily.com/releases/2012/05/120507141351.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com
How Sony Hopes To Make Any Glasses 'Smart'

How Sony Hopes To Make Any Glasses 'Smart'

Newsy (Dec. 17, 2014) Sony's glasses module attaches to the temples of various eye- and sunglasses to add a display and wireless connectivity. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins