Featured Research

from universities, journals, and other organizations

Drug kills cancer cells by restoring faulty tumor suppressor

Date:
May 14, 2012
Source:
Cell Press
Summary:
New research uses a novel, computer based strategy to identify potential anti-cancer drugs, including one that targets the third most common p53 mutation in human cancer, p53-R175H. The number of new cancer patients harboring this mutation in the United States who would potentially benefit from this drug is estimated to be 30,000 annually.

A new study describes a compound that selectively kills cancer cells by restoring the structure and function of one of the most commonly mutated proteins in human cancer, the "tumor suppressor" p53. The research, published by Cell Press in the May 15th issue of the journal Cancer Cell, uses a novel, computer based strategy to identify potential anti-cancer drugs, including one that targets the third most common p53 mutation in human cancer, p53-R175H. T

he number of new cancer patients harboring this mutation in the United States who would potentially benefit from this drug is estimated to be 30,000 annually.

P53 recognizes cellular stress and either puts the brakes on cell proliferation, or kills the cell if the damage is irreparable. The gene encoding p53 is mutated in over half of human cancers, and loss of p53 function has been linked to many aspects of cancer including aggressiveness, metastasis and poor response to chemotherapy and radiation. "Restoring the function of mutant p53 with a drug has long been recognized as an attractive cancer therapeutic strategy," explains senior study author, Dr. Darren R. Carpizo, from The Cancer Institute of New Jersey. "However, it has proven difficult to find compounds that restore the lost function of a defective tumor-suppressor."

Dr. Alexei Vazquez, a co-author of the study, developed a computer based screening method to identify compounds that target tumor cells with p53 mutations, but not cells with normal p53. The screening method was unique because it involved cancer cells with diverse genetic backgrounds, a model that recapitulates what is seen in actual human cancers. This method identified several compounds that killed cancer cells containing mutant p53. One of the compounds did so by restoring the structure and function of the p53-R175H mutant. The researchers went on describe the details of the reactivation mechanism and showed that normal cells were not impacted by the compound.

In addition to identifying a compound for selectively restoring the function of the p53-R175H mutant, the findings also support the development of rationally targeted cancer therapies. "Anti-cancer drug development is moving in the direction of "personalized medicine" in which the drugs are chosen based on the molecular pathways that are deranged in an individual patient's tumor," concludes Dr. Carpizo. "Our findings support the growing trend in developmental therapeutics in which the efficacy of future cancer drugs will depend upon the knowledge of the patient's tumor genotype."


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xin Yu, Alexei Vazquez, Arnold J. Levine, Darren R. Carpizo. Allele Specific p53 Mutant Reactivation. Cancer Cell, 25 May 2012 DOI: 10.1016/j.ccr.2012.03.042

Cite This Page:

Cell Press. "Drug kills cancer cells by restoring faulty tumor suppressor." ScienceDaily. ScienceDaily, 14 May 2012. <www.sciencedaily.com/releases/2012/05/120514122747.htm>.
Cell Press. (2012, May 14). Drug kills cancer cells by restoring faulty tumor suppressor. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/05/120514122747.htm
Cell Press. "Drug kills cancer cells by restoring faulty tumor suppressor." ScienceDaily. www.sciencedaily.com/releases/2012/05/120514122747.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Formerly Conjoined Twins Released From Dallas Hospital

Formerly Conjoined Twins Released From Dallas Hospital

Newsy (Apr. 16, 2014) Conjoined twins Emmett and Owen Ezell were separated by doctors in August. Now, nearly nine months later, they're being released from the hospital. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins