Featured Research

from universities, journals, and other organizations

Timely discovery: Physics research sheds new light on quantum dynamics

Date:
May 15, 2012
Source:
Kansas State University
Summary:
Physicists have made a breakthrough that improves understanding of matter-light interactions. Their research allows double ionization events to be observed at the time scale of attoseconds and shows that these ionization events occur earlier than thought -- a key factor to improve knowledge of correlated electron dynamics.

Artist's view of non-sequential double ionization. The 3D plots on the circle were obtained from experimental data and show how the velocities of the two electrons change with the electric-field evolution of the ionizing pulse. The plot in the center is the sum of all these single measurements. From these data, the scientists can reconstruct the detailed process of the double ionization.
Credit: Christian Hackenberger, Max-Planck-Institute for Quantum Optics

Kansas State University physicists and an international team of collaborators have made a breakthrough that improves understanding of matter-light interactions.

Their research allows double ionization events to be observed at the time scale of attoseconds, which are one-billionth of a billionth of a second. The physicists have also shown that these ionization events occur earlier than thought -- a key factor to improving knowledge of correlated electron dynamics, which involve two electrons and their interactions with each other. The work appears in a recent issue of Nature Communications.

"The research involves studying if these correlated electrons, ejected from an atom or a molecule, are traveling in the same or opposite directions," said Nora Johnson, a doctoral student in physics from Dell Rapids, S.D. "We can also determine if one electron has all the energy or if they share energy equally."

Other university researchers involved include Itzik Ben-Itzhak, university distinguished professor of physics, and Matthias Kling, assistant professor of physics. Kling is the principal investigator for the project and is on research leave at the Max Planck Institute of Quantum Optics in Garching, Germany, where he is performing related research. All of the researchers are involved with the university's James R. Macdonald Laboratory.

Double ionization occurs when two electrons are removed from an atom -- a process that can be caused by an intense laser pulse. When double ionization occurs in the laser field it can take the form of a sequential process, in which the laser removes one electron and then removes the other electron. This project focuses on another mechanism -- the nonsequential process for ionization -- in which the laser removes one electron, which is accelerated and hits a second electron to excite it. The laser then knocks out the second electron from the atom.

The researchers sent a four femtosecond-long laser pulse onto argon atoms. A femtosecond is a millionth of a billionth of a second. While most of the argon atoms were singly ionized, approximately every thousandth atom underwent nonsequential double ionization.

"The surprising result is that everybody expected that the second electron becomes excited and then, when the laser field is the strongest, this electron is removed," said Ben-Itzhak, director of the Macdonald laboratory. "But it actually happens earlier."

The researchers discovered that the time between the recollision and the second ionization is about 400 attoseconds. This is about 200 attoseconds earlier than the peak of the field, which is when physicists expected the second ionization to occur.

Johnson conducted her early experiments at the Macdonald Laboratory. She performed more extensive experiments during a 2009 Fulbright Fellowship at the Max Planck Institute of Quantum Optics. The two organizations have an ongoing collaboration and the Kansas State University team is directly funded by a $400,000 National Science Foundation grant.

"The key is that Nora has brought knowledge from Germany about short pulses and we can now continue these experiments in Kansas," Ben-Itzhak said. "We have an ongoing collaboration with them that goes both ways."

Now that the researchers have made an important discovery with atoms, Johnson is performing a similar experiment with molecules. She is performing experiments at the Macdonald Laboratory and will use the laboratory's expertise in imaging molecules.

"A molecule is more complex than an atom, which typically means its reaction dynamics are richer," Johnson said. "We are excited to pursue correlated electron dynamics at the next level of complexity to further understand them."


Story Source:

The above story is based on materials provided by Kansas State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Boris Bergues, Matthias Kübel, Nora G. Johnson, Bettina Fischer, Nicolas Camus, Kelsie J. Betsch, Oliver Herrwerth, Arne Senftleben, A. Max Sayler, Tim Rathje, Thomas Pfeifer, Itzik Ben-Itzhak, Robert R. Jones, Gerhard G. Paulus, Ferenc Krausz, Robert Moshammer, Joachim Ullrich, Matthias F. Kling. Attosecond tracing of correlated electron-emission in non-sequential double ionization. Nature Communications, 2012; 3: 813 DOI: 10.1038/ncomms1807

Cite This Page:

Kansas State University. "Timely discovery: Physics research sheds new light on quantum dynamics." ScienceDaily. ScienceDaily, 15 May 2012. <www.sciencedaily.com/releases/2012/05/120515131721.htm>.
Kansas State University. (2012, May 15). Timely discovery: Physics research sheds new light on quantum dynamics. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/05/120515131721.htm
Kansas State University. "Timely discovery: Physics research sheds new light on quantum dynamics." ScienceDaily. www.sciencedaily.com/releases/2012/05/120515131721.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) — Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

More Coverage


Billiard Game in an Atom: Physicists Trace Double Ionization of Argon Atoms on Attosecond Time Scales

May 8, 2012 — Physicists have traced the double ionization of argon atoms on attosecond time scales. When an intense laser pulse interacts with an atom it generates agitation on the micro scale. The most likely ... read more

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins