Featured Research

from universities, journals, and other organizations

Baby galaxies grew up quickly

Date:
May 16, 2012
Source:
University of Copenhagen
Summary:
Baby galaxies from the young universe more than 12 billion years ago evolved faster than previously thought, shows new research. This means that already in the early history of the universe, there was potential for planet formation and life.

All objects in the image are distant galaxies – not stars. Early galaxies from the infancy of the Universe more than 12 billion years ago evolved much more quickly than previously thought, new research shows. This means that already in the early history of the Universe, there was potential for planet formation and life.
Credit: Hubble Space Telescope

Baby galaxies from the young Universe more than 12 billion years ago evolved faster than previously thought, shows new research from the Niels Bohr Institute. This means that already in the early history of the Universe, there was potential for planet formation and life.

The research results have been published in the scientific journal, Monthly Notices of the Royal Astronomical Society Letters.

For several thousand years after the Big Bang 13.7 billion years ago, the Universe consisted of a hot, dense primordial soup of gases and particles. But the Universe was expanding rapidly and the primordial soup became less dense and cooled. However, the primordial soup was not evenly distributed, but was denser in some areas than others. The density in some of the densest areas increased due to gravity and began to contract, forming the first stars and galaxies. This took place approximately 500 million years after the Big Bang.

The earliest galaxies were probably composed of primitive, giant stars that consisted of only hydrogen and helium. There were no heavier elements. They first appeared later in the evolution of the Universe, created by nuclear processes in the stars.

Cosmic cycle

A star is a giant ball of glowing gas that produces energy by fusing hydrogen and helium into heavier and heavier elements. When no more energy can be extracted the star dies and massive clouds of dust and gas are flung out into space. These large clouds are condensed and recycled into new stars in a gigantic cosmic cycle. The new stars that are formed will have a higher content of heavier elements than the previous and for each generation of star formation there are more and more of the heavy elements and metals. And heavy elements (especially carbon and oxygen) are necessary for the formation of planets and life, as we know it.

Up until now, researchers thought that it had taken billions of years for stars to form and with that, galaxies with a high content of elements heavier than hydrogen and helium. But new research from the Niels Bohr Institute shows that this process went surprisingly quickly in some galaxies.

"We have studied 10 galaxies in the early Universe and analysed their light spectra. We are observing light from the galaxies that has been on a 10-12 billion year journey to Earth, so we see the galaxies as they were then. Our expectation was that they would be relatively primitive and poor in heavier elements, but we discovered somewhat to our surprise that the gas in some of the galaxies and thus the stars in them had a very high content of heavier elements. The gas was just as enriched as our own Sun," explains Professor Johan Fynbo from the Dark Cosmology Centre at the Niels Bohr Institute, University of Copenhagen.

Lighthouses of the Universe

The galaxies are so far away that you normally do not have the opportunity to observe them directly, but the researchers have used a special method.

"There are some extreme objects in the Universe called quasars. Quasars are gigantic black holes that are active and when matter falls into them, they emit light that is as strong as thousands of galaxies. They are like a kind of lighthouse that lights up in the Universe and can be seen very far away," explains Jens-Kristian Krogager, PhD student at the Dark Cosmology Centre at the Niels Bohr Institute, University Copenhagen. He explains that in order to use quasars as light sources the quasar must lie behind the galaxy you want to observe.

"We then look at the light from the quasar and can see that some light is missing. The missing quasar light in the image has been absorbed by the chemical elements in the galaxy in front of it. By analysing the spectral lines we can see which elements there are and by measuring the strength of each line we can see the amount of the elements," explains Jens-Kristian Krogager.

Life in the early Universe

They discovered not only that the galaxies from the very early Universe had a surprisingly large quantity of heavier elements, but also that one of the galaxies in particular was especially interesting.

"For one of the galaxies, we observed the outer regions and here there was also a high element content. This suggests that large parts of the galaxy are enriched with a high content of heavier elements and that means that already in the early history of the Universe there was potential for planet formation and life," says Johan Fynbo.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. J.-K. Krogager, J. P. U. Fynbo, P. Mψller, C. Ledoux, P. Noterdaeme, L. Christensen, B. Milvang-Jensen, M. Sparre. On the sizes of z≳2 damped Ly absorbing galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2012; DOI: 10.1111/j.1745-3933.2012.01272.x

Cite This Page:

University of Copenhagen. "Baby galaxies grew up quickly." ScienceDaily. ScienceDaily, 16 May 2012. <www.sciencedaily.com/releases/2012/05/120516120256.htm>.
University of Copenhagen. (2012, May 16). Baby galaxies grew up quickly. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2012/05/120516120256.htm
University of Copenhagen. "Baby galaxies grew up quickly." ScienceDaily. www.sciencedaily.com/releases/2012/05/120516120256.htm (accessed September 17, 2014).

Share This



More Space & Time News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Boeing, SpaceX to Send Astronauts to Space Station

Boeing, SpaceX to Send Astronauts to Space Station

AFP (Sep. 17, 2014) — NASA selected Boeing and SpaceX on Tuesday to build America's next spacecraft to carry astronauts to the International Space Station (ISS) by 2017, opening the way to a new chapter in human spaceflight. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) — Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
NASA Picks Boeing and SpaceX to Ferry Astronauts

NASA Picks Boeing and SpaceX to Ferry Astronauts

AP (Sep. 16, 2014) — NASA is a giant step closer to launching Americans again from U.S. soil. It has announced it has picked Boeing and SpaceX to transport astronauts to the International Space Station in the next few years. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins