Featured Research

from universities, journals, and other organizations

Ultra-short laser pulses for science and industry

Date:
May 18, 2012
Source:
Fraunhofer-Gesellschaft
Summary:
The shorter the pulse duration, the more precisely the laser tool operates. Ultra-short laser pulses of outstanding high average püower are opening the doors to new applications in high throughput materials processing. Thanks to the short pulse duration, thermal damage of the material being processed is minimized.

The shorter the pulse duration, the more precisely the laser tool operates. Ultra-short laser pulses of outstanding high average püower are opening the doors to new applications in high throughput materials processing. Thanks to the short pulse duration, thermal damage of the material being processed is minimized.

Laser technology uses light. Light can be rapidly and precisely deflected, shaped and focused. If we pulse laser light and reduce pulse duration more and more, the laser tool works even more precisely. A benefit: The material being processed heats up less and less. High-power, ultra-short pulses, then, are the ideal solution for medical applications, in brain surgery for instance, as the cerebral membrane is not damaged. Or for removing tumor tissue thereby conserving the surrounding tissue and blood vessels. This precision technology is also valued in the processing of materials, glass for instance: Lasers are able to cut narrow speaker ports in smartphone displays.

For years, ultra-short laser pulses have been used for the extremely precise and gentle processing of highly-sensitive materials. Until now though, they have often lacked in power. The newly developed laser platform solves this problem with the INNOSLAB amplifier as its core. Four mirrors surround a laser crystal plate -- the slab. Pump radiation enters at the two opposite faces of the slab. Ultra-short laser pulses are repeatedly reflected by these mirrors and pass through the slab several times. Energy is transfered from the pump radiation to the laser pulse until the required power is achieved.

The INNOSLAB platform was developed by the Fraunhofer Institute for Laser Technology ILT in Aachen and refined further together with several partners from industry and science: the Chair for Laser Technology at RWTH Aachen University, the Max Planck Institute for Quantum Optics MPQ in Munich and the companies Jenoptik AG, EdgeWave and Amphos -- the latter two being ILT spin-offs.

To develop new markets for laser systems with ultra-short wavelengths, the team of developers had to increase the mean laser output of ultra-short pulse beam sources -- up to several hundred watts. Higher power makes high volume production in industrie and shorter measuring times during scientific experiments possible. Between 2008 and 2011, two joint projects revolved around developing the new beam source: The aim of the PIKOFLAT project, supported by the Federal Ministry for Education and Research BMBF, was to structure printing tools and embossing dies. The goal was to reduce processing times while significantly increasing quality. One of the results of this project is the production of embossing cylinders that are used to create extremely fine artificial leather surfaces for the automotive industry. In the second joint project, KORONA, Fraunhofer collaborated closely with the Max Planck Institute of Quantum Optics in Garching near Munich and with RWTH Aachen University. The scientists jointly developed a compact beam source whose ultra-short wavelengths makes it possible to examine nano-structures.

The team received the Stifterverband's science award in recognition of its outstanding cross-location, multi-disciplinary collaboration on the laser platform for scaling the power of ultra-short laser pulses.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Ultra-short laser pulses for science and industry." ScienceDaily. ScienceDaily, 18 May 2012. <www.sciencedaily.com/releases/2012/05/120518081332.htm>.
Fraunhofer-Gesellschaft. (2012, May 18). Ultra-short laser pulses for science and industry. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/05/120518081332.htm
Fraunhofer-Gesellschaft. "Ultra-short laser pulses for science and industry." ScienceDaily. www.sciencedaily.com/releases/2012/05/120518081332.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins