Featured Research

from universities, journals, and other organizations

Indoor navigation system for blind

Date:
May 18, 2012
Source:
University of Nevada, Reno
Summary:
A computer science engineering team has developed an indoor navigation system for people with visual impairments. The researchers have explained how a combination of human-computer interaction and motion-planning research was used to build a low-cost accessible navigation system, called Navatar, which can run on a standard smartphone.

Human-computer interaction researcher Eelke Folmer of the University of Nevada, Reno, watches as Dora Uchel, a university student, demonstrates the indoor navigation system for the visually impaired developed by Kostas Bekris and Folmer of the Computer Science Engineering Department. She was one of several visually impaired students and community members who helped test the low-cost accessible system that operates with a standard smartphone.
Credit: Photo by Mike Wolterbeek, University of Nevada, Reno

University of Nevada, Reno computer science engineering team Kostas Bekris and Eelke Folmer presented their indoor navigation system for people with visual impairments at two national conferences in the past two weeks. The researchers explained how a combination of human-computer interaction and motion-planning research was used to build a low-cost accessible navigation system, called Navatar, which can run on a standard smartphone.

Related Articles


"Existing indoor navigation systems typically require the use of expensive and heavy sensors, or equipping rooms and hallways with radio-frequency tags that can be detected by a handheld reader and which are used to determine the user's location," Bekris, of the College of Engineering's Robotics Research Lab, said. "This has often made the implementation of such systems prohibitively expensive, with few systems having been deployed."

Instead, the University of Nevada, Reno navigation system uses digital 2D architectural maps that are already available for many buildings, and uses low-cost sensors, such as accelerometers and compasses, that are available in most smartphones, to navigate users with visual impairments. The system locates and tracks the user inside the building, finding the most suitable path based on the users special needs, and gives step-by-step instructions to the destination.

"Nevertheless, the smartphone's sensors, which are used to calculate how many steps the user has executed and her orientation, tend to pick up false signals," Folmer, who has developed exercise video games for the blind, said. "To synchronize the location, our system combines probabilistic algorithms and the natural capabilities of people with visual impairments to detect landmarks in their environment through touch, such as corridor intersections, doors, stairs and elevators."

Folmer explained that as touch screen devices are challenging to use for users with visual impairments, directions are provided using synthetic speech and users confirm the presence of a landmark by verbal confirmation or by pressing a button on the phone or on a Bluetooth headset. A benefit of this approach is that the user can leave the phone in their pocket leaving both hands free for using a cane and recognizing tactile landmarks.

"This is a very cool mix of disciplines, using the user as a sensor combined with sophisticated localization algorithms from the field of robotics," Folmer, of the University's Computer Science Engineering Human-Computer Interaction Lab, said.

The team is currently trying to implement their navigation system in other environments and integrate it into outdoor navigation systems that use GPS.

"My research is motivated by the belief that a disability can be turned into an innovation driver," Folmer said. "When we try to solve interaction design problems for the most extreme users, such as users with visual impairments, there is the potential to discover solutions that may benefit anyone. Though the navigation system was specifically developed for users with visual impairments, it can be used by sighted users as well."

For their work on the indoor navigation system for the blind, Bekris and Folmer recently won a PETA Proggy Award for Leadership in Ethical Science. PETA's Proggy Awards ("Proggy" is for "progress") recognize animal-friendly achievements. The navigation system was deemed such an achievement because it could decrease the need to rely on guide dogs.

They presented and demonstrated their research at the IEEE International Conference on Robotics and Automation in St. Paul., Minn. on May 15 and on May 7 at the CM SIGCHI Conference on Human Factors in Computing Systems, which is the premier international conference on human-computer interaction.


Story Source:

The above story is based on materials provided by University of Nevada, Reno. Note: Materials may be edited for content and length.


Cite This Page:

University of Nevada, Reno. "Indoor navigation system for blind." ScienceDaily. ScienceDaily, 18 May 2012. <www.sciencedaily.com/releases/2012/05/120518132704.htm>.
University of Nevada, Reno. (2012, May 18). Indoor navigation system for blind. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2012/05/120518132704.htm
University of Nevada, Reno. "Indoor navigation system for blind." ScienceDaily. www.sciencedaily.com/releases/2012/05/120518132704.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Jaguar Unveils 360 Virtual Windshield Making Car Pillars Appear Transparent

Buzz60 (Dec. 17, 2014) Jaguar unveils a virtual 360 degree windshield that may be the most futuristic automotive development yet. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
BlackBerry Launches Classic Smartphone

BlackBerry Launches Classic Smartphone

AP (Dec. 17, 2014) BlackBerry is returning to its roots with a new smartphone called the Classic, featuring a traditional keyboard at a time when rival Apple and Android phones - and most smartphone customers - have embraced touch screens. (Dec. 17) Video provided by AP
Powered by NewsLook.com
The Future of Work, Skills & Careers in a Digital World-Dr. Tracy Wilen

The Future of Work, Skills & Careers in a Digital World-Dr. Tracy Wilen

Working Mother (Dec. 16, 2014) 2014 Worklife Congress Video provided by Working Mother
Powered by NewsLook.com
Tech Companies Make Holiday Shopping Easier Than Ever

Tech Companies Make Holiday Shopping Easier Than Ever

Newsy (Dec. 16, 2014) Innovative new services allow consumers to shop with their smartphones, split bills and even haggle. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins