Featured Research

from universities, journals, and other organizations

Proven friction stir welding technology brings together reliability and affordability for NASA's space launch system

Date:
May 21, 2012
Source:
NASA
Summary:
NASA's next heavy-lift launch vehicle, the Space Launch System, is moving further in development faster thanks to proven advanced technologies like friction stir welding. Friction stir welding uses frictional heating combined with forging pressure to produce high-strength bonds virtually free of defects. The welding process transforms metals from a solid state into a "plastic-like" state, and uses a rotating pin tool to soften, stir and forge a bond between two metal plates to form a uniform welded joint -- a vital requirement of next-generation space hardware.

Four aluminum domes, created using innovative friction stir welding processes, are seen in this overhead view of the Marshall Space Flight Center Advanced Welding and Manufacturing Facility.
Credit: NASA/MSFC/David Higginbotham

NASA's next heavy-lift launch vehicle, the Space Launch System, is moving further in development faster thanks to proven advanced technologies like friction stir welding.

Friction stir welding uses frictional heating combined with forging pressure to produce high-strength bonds virtually free of defects. The welding process transforms metals from a solid state into a "plastic-like" state, and uses a rotating pin tool to soften, stir and forge a bond between two metal plates to form a uniform welded joint -- a vital requirement of next-generation space hardware.

"NASA is leveraging key technologies like friction stir welding from the Space Shuttle Program to design and manufacture the Space Launch System," said Todd May, SLS program manager at the Marshall Space Flight Center in Huntsville, Ala. "NASA's advancements in friction stir welding techniques used to manufacture the external tanks give SLS a head start in development while reducing program cost, increasing reliability and creating hardware with superior mechanical properties. This technology directly supports SLS' program tenets of safety, reliability and sustainability."

In the mid 1990s, following use of a new lightweight aluminum lithium alloy created to reduce the weight of the external tanks, Marshall engineers found the new alloy difficult, complex and costly to weld. Engineers researched and adapted the innovative friction stir welding process for use on the 153.8-feet-tall orange space shuttle external tanks used to hold propellant for the space shuttle main engines. The process reduced manufacturing costs, increased reliability and significantly lowered the number of defects to yield a nearly perfect weld.

The Space Shuttle Program implemented the new weld technique in its manufacturing process of the external tank in 2001. The first friction stir welded tank flew in 2009. Since then, NASA has developed multiple tools and advanced processes to enhance its welding capabilities on aerospace hardware.

"State-of-the-art friction stir welding will continue to be a critical technology as we continue to learn how to build more efficient space vehicles with less expensive materials," said Jon Street, welding and manufacturing lead in the Material & Processes Laboratory at the Marshall Center. "Friction stir welding yields higher strength metals with higher reliability and predictability. It also increases efficiency by reducing the number of weld passes that traditional fusion arc welding requires. In addition, it offers safer, more environmentally friendly operations than traditional welding by not creating hazards such as welding fumes, radiation or high voltage. SLS will benefit from all of these advancements."

Today, the Boeing Company of Huntsville, Ala., is developing the SLS core and upper stage using the friction stir welding process. The core stage will tower over 200 feet tall with a diameter of 27.5 feet and store cryogenic liquid hydrogen and liquid oxygen to feed RS-25 engines. The upper stage, powered by J-2X engines, will be used on the evolved SLS and share common attributes with the core stage such as its outer diameter, material composition, subsystem components and tooling. Both stages will be built at NASA's Michoud Assembly Facility in New Orleans with state-of-the-art manufacturing equipment and tooling -- including one of the largest robotic friction stir welding systems in the world.

"NASA's strategy to affordably achieve a 2017 first flight for its new launch vehicle depends a great deal on the ability to leverage existing technologies and expertise, while taking advantage of the new science and innovations necessary to achieve extended flights of discovery," said Jim Chilton, Boeing Exploration Launch Systems vice president. "Friction stir welding technology meets all of those challenges."


Story Source:

The above story is based on materials provided by NASA. Note: Materials may be edited for content and length.


Cite This Page:

NASA. "Proven friction stir welding technology brings together reliability and affordability for NASA's space launch system." ScienceDaily. ScienceDaily, 21 May 2012. <www.sciencedaily.com/releases/2012/05/120521153524.htm>.
NASA. (2012, May 21). Proven friction stir welding technology brings together reliability and affordability for NASA's space launch system. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2012/05/120521153524.htm
NASA. "Proven friction stir welding technology brings together reliability and affordability for NASA's space launch system." ScienceDaily. www.sciencedaily.com/releases/2012/05/120521153524.htm (accessed August 22, 2014).

Share This




More Space & Time News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Did Russia Really Find Plankton On The ISS? NASA Not So Sure

Newsy (Aug. 21, 2014) Russian cosmonauts say they've found evidence of sea plankton on the International Space Station's windows. NASA is a little more skeptical. Video provided by Newsy
Powered by NewsLook.com
Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins