Featured Research

from universities, journals, and other organizations

Mystifying materials: New materials contract when they should expand, expand when they should contract

Date:
May 24, 2012
Source:
Northwestern University
Summary:
It's not magic, but several new materials seem to exhibit magical properties. When tensioned, ordinary materials expand along the direction of the applied force. The new metamaterials do the opposite when tensioned -- they contract. Other of their materials expand when compressed. Materials are networks of connected constituents and can respond in surprising ways. The researchers applied network concepts to design the new materials, all of which exhibit negative compressibility transitions.

It's not magic, but new materials designed by two Northwestern University researchers seem to exhibit magical properties. Some contract when they should expand, and others expand when they should contract.

Related Articles


When tensioned, ordinary materials expand along the direction of the applied force. The new metamaterials (artificial materials engineered to have properties that may not be found in nature) do the opposite when tensioned -- they contract. Other materials designed by the researchers expand when compressed.

"Materials are networks of connected constituents, and when you apply tension or pressure, they can respond in surprising ways," said Adilson E. Motter, the Harold H. and Virginia Anderson Professor of Physics and Astronomy at Northwestern's Weinberg College of Arts and Sciences.

"Think of a piece of rod that you tension by pulling its ends with your fingers," he said. "It would normally get longer, but for these materials it will get shorter."

Motter and Zachary G. Nicolaou applied network concepts to design the new materials, all of which exhibit negative compressibility transitions. Their results are published this week in Nature Materials. Nicolaou, an undergraduate physics student at Northwestern when the work was done, now is a first-year graduate student at Caltech.

Different types of metamaterials already have led to interesting applications such as superlenses, visibility cloaks and acoustic shields. But no existing material or metamaterial was previously shown to exhibit negative compressibility transitions.

These metamaterials may enable new applications, including the development of new protective mechanical devices and actuators (a type of assembly for operating or controlling a system), and the enhancement of microelectromechanical systems.

The materials also exhibit force amplification, a phenomenon in which a small increase in deformation leads to an abrupt increase in the response force. The latter can be useful for the design of micro-mechanical controls, ratchets and force amplifiers.

All known materials deform along the direction of a constant applied force by expanding when they are tensioned and contracting when they are compressed. Owing to stability considerations, such contraction of a material in the same direction of an applied tension (in response to tension) cannot occur continuously. Possibly because of this, most people would intuitively expect that contraction in response to tension would be impossible.

The important point of the Northwestern study is that such a counterintuitive response can occur discontinuously, namely, through something known by physicists as a phase transition. A familiar form of phase transition is the transformation of water into ice or vapor. Phase transitions allow for abrupt changes in the physical properties of a material. Yet, all conventional materials are such that phase transitions will lead to ordinary compressibility.

"This research shows that new materials, in fact, can be created to exhibit a phase transition during which the material undergoes contraction when tensioned or expansion when pressured," Motter said. "We refer to such transformations as 'negative compressibility transitions.'"

Materials with such properties have not been discovered in nature, but they can be constructed as metamaterials. Metamaterials are engineered materials that gain their properties from structure rather than composition. The relevant building blocks of such materials are not necessarily microscopic, atomic-sized objects, but may in fact be composed of a large number of atoms and hence be mesoscopic or macroscopic in size.

A key step for the discovery of the materials in this study was the representation of the material as a network of interacting particles.

"We were inspired by the observation that the realized equilibrium is not necessarily optimal in a decentralized network," Motter said. "A conceptual precedent to this is the now 45-year-old insight from German mathematician Dietrich Braess that adding a road to a traffic network may increase rather than decrease the average travel time."

Analogous effects also have been identified in physical networks, including an increase of current upon the removal of an intermediate conductor in electric networks. These are examples in which the equilibrium realized by the system can be brought closer to the optimum by constraining the structure of the network.

"Our materials are devised such that an analogous phenomenon occurs spontaneously, in response to a change in the external force rather than in the structure of the network," Motter said.


Story Source:

The above story is based on materials provided by Northwestern University. The original article was written by Megan Fellman. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zachary G. Nicolaou, Adilson E. Motter. Mechanical metamaterials with negative compressibility transitions. Nature Materials, 2012; DOI: 10.1038/nmat3331

Cite This Page:

Northwestern University. "Mystifying materials: New materials contract when they should expand, expand when they should contract." ScienceDaily. ScienceDaily, 24 May 2012. <www.sciencedaily.com/releases/2012/05/120524112529.htm>.
Northwestern University. (2012, May 24). Mystifying materials: New materials contract when they should expand, expand when they should contract. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2012/05/120524112529.htm
Northwestern University. "Mystifying materials: New materials contract when they should expand, expand when they should contract." ScienceDaily. www.sciencedaily.com/releases/2012/05/120524112529.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Magnetic Motors, Not Cables, Power This Elevator

Magnetic Motors, Not Cables, Power This Elevator

Newsy (Nov. 28, 2014) Imagine an elevator without cables. ThyssenKrupp has drafted an elevator concept that would cruise on linear magnetic motors. Video provided by Newsy
Powered by NewsLook.com
NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins