Featured Research

from universities, journals, and other organizations

Anti-reflective plastics inspired by moths' eyes

Date:
May 24, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
Innovative plastics offer improved performance and wider viewing angles over existing anti-reflective plastics in the market. This plastic uses a nanotechnology method that creates a complex pattern of super tiny structures that mimic the patterns found on a moth’s eye, which has a unique method of diffusing light.

Scanning electron microscope (SEM) image showing the engineered anti-reflective nanostructures that mimic structures found in a moth’s eye.
Credit: IMRE

Innovative plastics offer improved performance and wider viewing angles over existing anti-reflective plastics in the market. This plastic uses a nanotechnology method that creates a complex pattern of super tiny structures that mimic the patterns found on a moth's eye, which has a unique method of diffusing light.

Related Articles


Researchers from A*STAR's Institute of Materials Research and Engineering (IMRE) and their commercial partners have developed a new plastic that reflects just 0.09 -- 0.2% of the visible light hitting its surface. This matches or betters existing anti-reflective and anti-glare plastics in the market, which typically have reported reflectivity of around 1% of visible light. Such plastics are used in anything from TV displays to windows and even solar cells. Because of the unique nanotechnology method used, the new plastic developed by IMRE maintains very low reflectivity (<0.7%) at angles up to 45˚. This means that TV viewers can have wider viewing angles with less glare and organic solar cells have larger areas for light absorption.

"The new plastic was made possible because of the unique nanoimprint expertise that we have developed at IMRE," said Dr Low Hong Yee, the senior scientist who is leading the research. Several companies are in the process of licensing the anti-reflective nanostructure technology from Exploit Technologies Pte Ltd, the technology transfer arm of A*STAR. "We are also developing complementary research that allows the technology to be easily ramped-up to an industrial scale," explained Dr Low.

This plastic material is the first successful result of the IMRE-led Industrial Consortium On Nanoimprint (ICON), which partners local and overseas companies to promote the manufacturing of nanoimprint technology. Nanoimprinting relies on engineering the physical aspects of the plastics rather than using harmful chemicals to change the properties of the plastic. The technology has allowed the researchers to create very unique, complex hierarchical 'moth eye-like' anti-reflective structures where nanometer-sized structures are placed on top of other microstructures -- different from how other similar plastics are made. This formed special patterns that are better at reducing glare and reflection and provides wider viewing angles than the current available plastics.

"This is an exciting innovation -- mimicking nature through the nanoimprint technology to solve real world problems. I am very pleased that the collaboration with industry has helped move this R&D from the laboratory to application in the industry, said Prof Andy Hor, IMRE's Executive Director. He adds, "The development of the new plastic is a testament to the strength of Singapore's advanced R&D capabilities, the benefits of nanoimprint technology and the confidence that companies place on our technologies."


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Anti-reflective plastics inspired by moths' eyes." ScienceDaily. ScienceDaily, 24 May 2012. <www.sciencedaily.com/releases/2012/05/120524134520.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, May 24). Anti-reflective plastics inspired by moths' eyes. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2012/05/120524134520.htm
The Agency for Science, Technology and Research (A*STAR). "Anti-reflective plastics inspired by moths' eyes." ScienceDaily. www.sciencedaily.com/releases/2012/05/120524134520.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

Buzz60 (Oct. 23, 2014) New York City officials announce a new technology initiative for the NYPD. Tim Minton reports smartphones and tablets will be given to more than 40,000 NYPD officers and detectives in an effort to change the way they perform their duties. Video provided by Buzz60
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins