Featured Research

from universities, journals, and other organizations

Neuron function restored in brains damaged by Huntington's disease

Date:
May 29, 2012
Source:
Van Andel Research Institute
Summary:
Researchers have restored neuron function to parts of the brain damaged by Huntington's disease (HD) by successfully transplanting HD-induced pluripotent stem cells into animal models.

Researchers from South Korea, Sweden, and the United States have collaborated on a project to restore neuron function to parts of the brain damaged by Huntington's disease (HD) by successfully transplanting HD-induced pluripotent stem cells into animal models.

Related Articles


Induced pluripotent stem cells (iPSCs) can be genetically engineered from human somatic cells such as skin, and can be used to model numerous human diseases. They may also serve as sources of transplantable cells that can be used in novel cell therapies. In the latter case, the patient provides a sample of his or her own skin to the laboratory.

In the current study, experimental animals with damage to a deep brain structure called the striatum (an experimental model of HD) exhibited significant behavioral recovery after receiving transplanted iPS cells. The researchers hope that this approach eventually could be tested in patients for the treatment of HD.

"The unique features of the iPSC approach means that the transplanted cells will be genetically identical to the patient and therefore no medications that dampen the immune system to prevent graft rejection will be needed," said Jihwan Song, D.Phil. Associate Professor and Director of Laboratory of Developmental & Stem Cell Biology at CHA Stem Cell Institute, CHA University, Seoul, South Korea and co-author of the study.

The study, published online this week in Stem Cells, found that transplanted iPSCs initially formed neurons producing GABA, the chief inhibitory neurotransmitter in the mammalian central nervous system, which plays a critical role in regulating neuronal excitability and acts at inhibitory synapses in the brain. GABAergic neurons, located in the striatum, are the cell type most susceptible to degeneration in HD.

Another key point in the study involves the new disease models for HD presented by this method, allowing researchers to study the underlying disease process in detail. Being able to control disease development from such an early stage, using iPS cells, may provide important clues about the very start of disease development in HD. An animal model that closely imitates the real conditions of HD also opens up new and improved opportunities for drug screening.

"Having created a model that mimics HD progression from the initial stages of the disease provides us with a unique experimental platform to study Huntington's disease pathology" said Patrik Brundin, M.D., Ph.D., Director of the Center for Neurodegenerative Science at Van Andel Research Institute (VARI), Head of the Neuronal Survival Unit at Lund University, Sweden, and co-author of the study.

Huntington's disease (HD) is a neurodegenerative genetic disorder that affects muscle coordination and leads to cognitive decline and psychiatric problems. It typically becomes noticeable in mid-adult life, with symptoms beginning between 35 and 44 years of age. Life expectancy following onset of visual symptoms is about 20 years. The worldwide prevalence of HD is 5-10 cases per 100,000 persons. Key to the disease process is the formation of specific protein aggregates (essentially abnormal clumps) inside some neurons.


Story Source:

The above story is based on materials provided by Van Andel Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Iksoo Jeon, Nayeon Lee, Jia-Yi Li, In-Hyun Park, Kyoung Sun Park, Jisook Moon, Soung Han Shim, Chunggab Choi, Da-Jeong Chang, Jihye Kwon, Seung-Hun Oh, Dong Ah Shin, Hyun Sook Kim, Jeong Tae Do, Dong Ryul Lee, Manho Kim, Kyung-Sun Kang, George Q. Daley, Patrik Brundin, Jihwan Song. Neuronal Properties, In Vivo Effects and Pathology of a Huntington's Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 2012; DOI: 10.1002/stem.1135

Cite This Page:

Van Andel Research Institute. "Neuron function restored in brains damaged by Huntington's disease." ScienceDaily. ScienceDaily, 29 May 2012. <www.sciencedaily.com/releases/2012/05/120529113631.htm>.
Van Andel Research Institute. (2012, May 29). Neuron function restored in brains damaged by Huntington's disease. ScienceDaily. Retrieved November 1, 2014 from www.sciencedaily.com/releases/2012/05/120529113631.htm
Van Andel Research Institute. "Neuron function restored in brains damaged by Huntington's disease." ScienceDaily. www.sciencedaily.com/releases/2012/05/120529113631.htm (accessed November 1, 2014).

Share This



More Health & Medicine News

Saturday, November 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins