Featured Research

from universities, journals, and other organizations

Slashing energy needs for next-generation memory

Date:
June 7, 2012
Source:
Rice University
Summary:
Researchers have unveiled a new data-encoding scheme that slashes more than 30 percent of the energy needed to write data onto memory cards that use "phase-change memory" -- a competitor to flash memory that has big backing from industry heavyweights.

Researchers from Rice University and UCLA unveiled a new data-encoding scheme this week that slashes more than 30 percent of the energy needed to write data onto new memory cards that use "phase-change memory" (PCM) -- a competitor to flash memory that has big backing from industry heavyweights.

Related Articles


The breakthrough was presented at the IEEE/ACM Design Automation Conference (DAC) in San Francisco by researchers from Rice University's Adaptive Computing and Embedded Systems (ACES) Laboratory.

PCM uses the same type of materials as those used in rewritable CDs and DVDs, and it does the same job as flash memory -- the mainstay technology in USB thumb drives and memory cards for cameras and other devices. IBM and Samsung have each demonstrated PCM breakthroughs in recent months, and PCM is ultimately expected to be faster, cheaper and more energy-efficient than flash.

"We developed an optimization framework that exploits asymmetries in PCM read/write to minimize the number of bit transitions, which in turns yields energy and endurance efficiency," said researcher Azalia Mirhoseini, a Rice graduate student in electrical and computer engineering, who presented the research results at DAC.

In PCM technology, heat-sensitive materials are used to store data as ones and zeros by changing the material resistance. The electronic properties of the material change from low resistance to high resistance when heat is applied to alter the arrangement of atoms from a conducting, crystalline structure to a nonconducting, glassy structure. Writing data on PCM takes a fraction of the time required to write on flash memory, and the process is reversible but asymmetric; creating one state requires a short burst of intense heat, and reversing that state requires more time and less heat.

The new encoding method is the first to take advantage of these asymmetric physical properties. One key to the encoding scheme is reading the existing data before new data is written. Using a combination of programming approaches, the researchers created an encoder that can scan the "words" -- short sections of bits on the card -- and overwrite only the parts of the words that need to be overwritten.

"One part of the method is based on dynamic programming, which starts from small codes that we show to be optimal, and then builds upon these small codes to rapidly search for improved, longer codes that minimize the bit transitions," said lead researcher Farinaz Koushanfar, director of Rice's ACES Laboratory and assistant professor of electrical and computer engineering and of computer science at Rice.

The second part of the new method is based on integer-linear programming (ILP), a technique that can find optimal solutions. The more complex the solution, the longer ILP takes to find the optimal solution, so the team found a shortcut by using dynamic programming to create a cheat sheet of small codes that could be quickly combined for more complex solutions.

Research collaborator Miodrag Potkonjak, professor of computer science at UCLA, said the team's solution to PCM optimization is pragmatic.

"The overhead for ILP is practical because the codes are found only once, during the design phase," Potkonjak said. "The codes are stored for later use during PCM operation."

The researchers also found the new encoding scheme cut more than 40 percent of "memory wear," the exhaustion of memory due to rewrites. Each memory cell can handle a limited number of rewrite cycles before it becomes unusable.

The researchers said the applicability, low overhead and efficiency of the proposed optimization methods were demonstrated with extensive evaluations on benchmark data sets. In addition to PCM, they said, the encoding method is also applicable for other types of bit-accessible memories, including STT-RAM, or spin-transfer torque random-access memory.

The research was funded by the Office of Naval Research, the Army Research Office and the National Science Foundation.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Slashing energy needs for next-generation memory." ScienceDaily. ScienceDaily, 7 June 2012. <www.sciencedaily.com/releases/2012/06/120607154144.htm>.
Rice University. (2012, June 7). Slashing energy needs for next-generation memory. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/06/120607154144.htm
Rice University. "Slashing energy needs for next-generation memory." ScienceDaily. www.sciencedaily.com/releases/2012/06/120607154144.htm (accessed October 30, 2014).

Share This



More Computers & Math News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com
IBM Taps Into Twitter's Data With New Partnership

IBM Taps Into Twitter's Data With New Partnership

Newsy (Oct. 29, 2014) The new partnership will allow IBM to access Twitter’s data and analytics to help IBM clients better understand their consumers. Video provided by Newsy
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins