Featured Research

from universities, journals, and other organizations

NASA's Spitzer finds first objects burned furiously

Date:
June 7, 2012
Source:
NASA/Jet Propulsion Laboratory
Summary:
The faint, lumpy glow given off by the very first objects in the universe may have been detected with the best precision yet, using NASA's Spitzer Space Telescope. These faint objects might be wildly massive stars or voracious black holes. They are too far away to be seen individually, but Spitzer has captured new, convincing evidence of what appears to be the collective pattern of their infrared light. The observations help confirm the first objects were numerous in quantity and furiously burned cosmic fuel.

Astronomers have uncovered patterns of light that appear to be from the first stars and galaxies that formed in the universe. The light patterns were hidden within a strip of sky observed by NASA's Spitzer Space Telescope.
Credit: NASA/JPL-Caltech/GSFC

The faint, lumpy glow given off by the very first objects in the universe may have been detected with the best precision yet, using NASA's Spitzer Space Telescope. These faint objects might be wildly massive stars or voracious black holes. They are too far away to be seen individually, but Spitzer has captured new, convincing evidence of what appears to be the collective pattern of their infrared light.

The observations help confirm the first objects were numerous in quantity and furiously burned cosmic fuel.

"These objects would have been tremendously bright," said Alexander "Sasha" Kashlinsky of NASA's Goddard Space Flight Center in Greenbelt, Md., lead author of a new paper appearing in The Astrophysical Journal. "We can't yet directly rule out mysterious sources for this light that could be coming from our nearby universe, but it is now becoming increasingly likely that we are catching a glimpse of an ancient epoch. Spitzer is laying down a roadmap for NASA's upcoming James Webb Telescope, which will tell us exactly what and where these first objects were."

Spitzer first caught hints of this remote pattern of light, known as the cosmic infrared background, in 2005, and again with more precision in 2007. Now, Spitzer is in the extended phase of its mission, during which it performs more in-depth studies on specific patches of the sky. Kashlinsky and his colleagues used Spitzer to look at two patches of sky for more than 400 hours each.

The team then carefully subtracted all the known stars and galaxies in the images. Rather than being left with a black, empty patch of sky, they found faint patterns of light with several telltale characteristics of the cosmic infrared background. The lumps in the pattern observed are consistent with the way the very distant objects are thought to be clustered together.

Kashlinsky likens the observations to looking for Fourth of July fireworks in New York City from Los Angeles. First, you would have to remove all the foreground lights between the two cities, as well as the blazing lights of New York City itself. You ultimately would be left with a fuzzy map of how the fireworks are distributed, but they would still be too distant to make out individually.

"We can gather clues from the light of the universe's first fireworks," said Kashlinsky. "This is teaching us that the sources, or the "sparks," are intensely burning their nuclear fuel."

The universe formed roughly 13.7 billion years ago in a fiery, explosive Big Bang. With time, it cooled and, by around 500 million years later, the first stars, galaxies and black holes began to take shape. Astronomers say some of that "first light" might have traveled billions of years to reach the Spitzer Space Telescope. The light would have originated at visible or even ultraviolet wavelengths and then, because of the expansion of the universe, stretched out to the longer, infrared wavelengths observed by Spitzer.

The new study improves on previous observations by measuring this cosmic infrared background out to scales equivalent to two full moons -- significantly larger than what was detected before. Imagine trying to find a pattern in the noise in an old-fashioned television set by looking at just a small piece of the screen. It would be hard to know for certain if a suspected pattern was real. By observing a larger section of the screen, you would be able to resolve both small- and large-scale patterns, further confirming your initial suspicion.

Likewise, astronomers using Spitzer have increased the amount of sky examined to obtain more definitive evidence of the cosmic infrared background. The researchers plan to explore more patches of sky in the future to gather more clues hidden in the light of this ancient era.

"This is one of the reasons we are building the James Webb Space Telescope," said Glenn Wahlgren, Spitzer program scientist at NASA Headquarters in Washington. "Spitzer is giving us tantalizing clues, but James Webb will tell us what really lies at the era where stars first ignited."

Other authors are Richard Arendt of Goddard and the University of Maryland in Baltimore County; Matt Ashby and Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass.; and John Mather and Harvey Moseley of Goddard. Fazio led the initial observations of these sky fields.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for the agency's Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

For more information about Spitzer, visit: http://www.nasa.gov/spitzer .


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "NASA's Spitzer finds first objects burned furiously." ScienceDaily. ScienceDaily, 7 June 2012. <www.sciencedaily.com/releases/2012/06/120607161333.htm>.
NASA/Jet Propulsion Laboratory. (2012, June 7). NASA's Spitzer finds first objects burned furiously. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/06/120607161333.htm
NASA/Jet Propulsion Laboratory. "NASA's Spitzer finds first objects burned furiously." ScienceDaily. www.sciencedaily.com/releases/2012/06/120607161333.htm (accessed April 24, 2014).

Share This



More Space & Time News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Risk of Asteroid Hitting Earth Higher Than Thought, Study Shows

Reuters - US Online Video (Apr. 23, 2014) A group of space explorers say the chance of a city-obliterating asteroid striking Earth is higher than scientists previously believed. Deborah Gembara reports. Video provided by Reuters
Powered by NewsLook.com
Nuclear-Level Asteroids Might Be More Common Than We Realize

Nuclear-Level Asteroids Might Be More Common Than We Realize

Newsy (Apr. 23, 2014) The B612 Foundation says asteroids strike Earth much more often than previously thought, and are hoping to build an early warning system. Video provided by Newsy
Powered by NewsLook.com
Two US Astronauts Step out on Spacewalk for ISS Repairs

Two US Astronauts Step out on Spacewalk for ISS Repairs

AFP (Apr. 23, 2014) Two US astronauts stepped out on a brief spacewalk Wednesday to install a backup computer at the International Space Station after one failed earlier this month. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
NASA Chief Outlines Plan for Human Mission to Mars

NASA Chief Outlines Plan for Human Mission to Mars

AFP (Apr. 22, 2014) NASA administrator Charles Bolden, speaking at the 'Human to Mars Summit' in Washington, says that learning more about the Red Planet can help answer the 'fundamental question' of 'life beyond Earth'. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins