Featured Research

from universities, journals, and other organizations

New method generates cardiac muscle patches from stem cells

Date:
June 19, 2012
Source:
University of Michigan Health System
Summary:
A cutting-edge method uses stems cells to create heart cells that display activity similar to most people's resting heart rate.

A cutting-edge method developed at the University of Michigan Center for Arrhythmia Research successfully uses stem cells to create heart cells capable of mimicking the heart's crucial squeezing action.

The cells displayed activity similar to most people's resting heart rate. At 60 beats per minute, the rhythmic electrical impulse transmission of the engineered cells in the U-M study is 10 times faster than in most other reported stem cell studies.

An image of the electrically stimulated cardiac cells is displayed on the cover of the current issue of Circulation Research, a publication of the American Heart Association.

For those suffering from common, but deadly heart diseases, stem cell biology represents a new medical frontier.

The U-M team of researchers is using stem cells in hopes of helping the 2.5 million people with an arrhythmia, an irregularity in the heart's electrical impulses that can impair the heart's ability to pump blood.

"To date, the majority of studies using induced pluripotent stem cell-derived cardiac muscle cells have focused on single cell functional analysis," says senior author Todd J. Herron, Ph.D., an assistant research professor in the Departments of Internal Medicine and Molecular & Integrative Physiology at the U-M.

"For potential stem cell-based cardiac regeneration therapies for heart disease, however, it is critical to develop multi-cellular tissue like constructs that beat as a single unit," says Herron.

Their objective, working with researchers at the University of Oxford, Imperial College and University of Wisconsin, included developing a bioengineering approach, using stem cells generated from skin biopsies, which can be used to create large numbers of cardiac muscle cells that can transmit uniform electrical impulses and function as a unit.

Furthermore, the team designed a fluorescent imaging platform using light emitting diode (LED) illumination to measure the electrical activity of the cells.

"Action potential and calcium wave impulse propogation trigger each normal heart beat, so it is imperative to record each parameter in bioengineered human cardiac patches," Herron says.

Authors of the study note that the velocity of the engineered cardiac cells, while faster than previous reports, it is still slower than the velocity observed in the beating adult heart.

Still the velocity is comparable to commonly used rodent cells, and authors suggest human cardiac patches could be used rather than rodent systems for research purposes.

The new method can be readily applied in most cardiac research laboratories and opens the door for the use of cardiac stem cell patches in disease research, testing of new drug treatments and therapies to repair damaged heart muscle.


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. P. Lee, M. Klos, C. Bollensdorff, L. Hou, P. Ewart, T. J. Kamp, J. Zhang, A. Bizy, G. Guerrero-Serna, P. Kohl, J. Jalife, T. J. Herron. Simultaneous Voltage and Calcium Mapping of Genetically Purified Human Induced Pluripotent Stem Cell-Derived Cardiac Myocyte Monolayers. Circulation Research, 2012; 110 (12): 1556 DOI: 10.1161/CIRCRESAHA.111.262535

Cite This Page:

University of Michigan Health System. "New method generates cardiac muscle patches from stem cells." ScienceDaily. ScienceDaily, 19 June 2012. <www.sciencedaily.com/releases/2012/06/120619093215.htm>.
University of Michigan Health System. (2012, June 19). New method generates cardiac muscle patches from stem cells. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2012/06/120619093215.htm
University of Michigan Health System. "New method generates cardiac muscle patches from stem cells." ScienceDaily. www.sciencedaily.com/releases/2012/06/120619093215.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins