Featured Research

from universities, journals, and other organizations

Graphene is a tunable plasmonic medium

Date:
June 20, 2012
Source:
University of California - San Diego
Summary:
With a beam of infrared light, scientists have sent ripples of electrons along the surface of graphene and demonstrated that they can control the length and height of these oscillations, called plasmons, using a simple electrical circuit. This is the first time anyone has observed plasmons on graphene, sheets of carbon just one atom thick, and an important step toward using plasmons to process and transmit information in spaces too tight to use light.

An infrared laser beam focused on the arm of an atomic-force microscope launches plasmons, waves through electrons, on the surface of graphene, a single honeycomb layer of linked carbon atoms.
Credit: Basov Lab/UCSD

With a beam of infrared light, scientists have sent ripples of electrons along the surface of graphene and demonstrated that they can control the length and height of these oscillations, called plasmons, using a simple electrical circuit.

Related Articles


This is the first time anyone has observed plasmons on graphene, sheets of carbon just one atom thick with a host of intriguing physical properties, and an important step toward using plasmons to process and transmit information in spaces too tight to use light.

"Everybody suspected that plasmons should be there, but seeing is believing. We've imaged them and shown that they propagate. And we've demonstrated that we can control them," said Dimitri Basov, professor of physics at the University of California, San Diego, and senior author of the report published online June 21 in advance of print publication in Nature.

To make the devices, they peeled graphene from graphite, the stuff of pencil lead, and rubbed it onto silicon dioxide chips.

They launched plasmons by shining an infrared laser on the surface of the graphene and measured the waves using the ultrasensitive arm of an atomic force microscope.

The outgoing waves are impossible to measure. But as they reach the edge of the graphene, they reflect like water waves from the wake of a boat bouncing off a pier.

Oscillations returning from the edge add to, or cancel out, subsequent waves, creating a characteristic interference pattern that reveals their wavelength and amplitude.

The scientists showed that pattern could be altered by controlling an electrical circuit formed with electrodes attached to the graphene surface and a layer of pure silicon beneath the chips.

"Here it is," Basov said. "You just take a battery from a flashlight and crank the voltage and you have a tunable plasmonic device."

Just like light can carry complex signals through fiber optics, plasmons could be used to transmit information. But plasmons could carry information within far tighter spaces.

"It's impossible to confine light at nanometer scales because light wavelengths are many hundreds of nanometers," said Zhe Fei, a graduate student in Basov's lab and the first author of the paper. "We used light to excite surface plasmons with a length scale of 100 nanometers or less that can travel at very high speed from one side of the chip to the other."

The performance they observed is promising. These are some of the shortest plasmon wavelengths measured in any material, yet the waves propagate as far as they do in metals like gold. And unlike plasmons on metals, graphene plasmons can be tuned.

A team of scientists working independently in Spain lead by Frank Koppens, Rainer Hillenbrand and Javier Garcia de Abajo has made a similar discovery using graphene film deposited by a gas rather than peeled from graphite. Their report, published in the same issue of Nature, bolsters this evidence for graphene plasmons.

"Graphene optoelectronics and information processing are very promising. We like to see our work contribute to future technology," Basov said. "There also is entirely new, fundamental science coming out of this. By monitoring plasmons, we learn what electrons do in this new form of carbon, how fundamental interactions govern their properties. This is a path of inquiry."


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Journal Reference:

  1. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, D. N. Basov. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature, 2012; DOI: 10.1038/nature11253

Cite This Page:

University of California - San Diego. "Graphene is a tunable plasmonic medium." ScienceDaily. ScienceDaily, 20 June 2012. <www.sciencedaily.com/releases/2012/06/120620133304.htm>.
University of California - San Diego. (2012, June 20). Graphene is a tunable plasmonic medium. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/06/120620133304.htm
University of California - San Diego. "Graphene is a tunable plasmonic medium." ScienceDaily. www.sciencedaily.com/releases/2012/06/120620133304.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins