Featured Research

from universities, journals, and other organizations

Graphene? From any lab

Date:
June 20, 2012
Source:
Institute of Physical Chemistry of the Polish Academy of Sciences
Summary:
Considered by many as the most promising material of the future, graphene still remains an expensive and hard-to-fabricate substance. Researchers have now developed a low cost method for manufacturing multilayered graphene sheets. The new method does not require any specialized equipment and can be implemented in any laboratory.

Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw developed a low cost, simply implementable method for chemical production of graphene coatings with a thickness of a few hundreds nanometer. The picture shows Izabela Kamiska, a Ph.D. student from the IPC PAS, presenting the graphene structure.
Credit: IPC PAS, Grzegorz Krzyzewski

Considered by many as the most promising material of the future, graphene still remains an expensive and hard-to-fabricate substance. Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw, and the Interdisciplinary Research Institute in Lille developed a low cost method for manufacturing multilayered graphene sheets. The new method does not require any specialized equipment and can be implemented in any laboratory.

A low cost method for producing graphene sheets has been developed in cooperation within research project by teams from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw and the Interdisciplinary Research Institute (IRI) in Lille, France. The method is simple enough to be provided in almost any laboratory throughout the world.

Graphene was discovered in 2004, by peeling off carbon layers from graphite using an ordinary scotch tape. "In what had been peeled off the researchers were able to find one-atom-thick sheets. And that was graphene. If we are thinking about industrial applications of graphene, we have to find better controlled methods for producing this material in a large scale, without using an expensive, specialized equipment," says Izabela Kamińska, a PhD student from the IPC PAS, a scholarship holder of the Foundation for Polish Science within the International PhD Projects Programme. Kamińska has carried out her experiments at the International Research Institute.

Considering the structure, graphene is a two dimensional system composed of six-membered carbon rings. The hexagonal graphene lattice resembles a honeycomb, with the difference that the graphene sheet has the lowest possible thickness: of one atom only.

Unusual properties of graphene are closely related to the unique structure. Graphene is almost entirely transparent, more than hundred times stronger than steel and very flexible. At the same time it shows excellent thermal and electric conductivity, which makes it a good material for applications in electronics, e.g. for manufacturing thin, flexible and strong displays or fast processing circuits. It is also suitable as a material for various sensors.

The existing methods for fabricating graphene -- including deposition of epitaxial layer on a metallic substrate or silicon carbide, or chemical or physical vapour deposition -- require expensive, specialized equipment and complex manufacturing procedures. Meanwhile, the only more complex apparatus used in the method for producing graphene sheets developed at the IPC PAS and the IRI is an ultrasonic cleaner, an equipment common in many laboratories.

The new process for producing graphene sheets starts with graphite, one of carbon allotrope, on the molecular level resembling a sandwich composed of many graphene planes. These sheets are hardly separable. To weaken interactions between them, graphite must be oxidized, which is usually accomplished with the Hummers method. A powder obtained in that way -- graphite oxide -- is subsequently suspended in water and placed in an ultrasonic cleaner. The ultrasounds exfoliate oxidized graphene sheets from each other and the resulting colloid contains single graphene oxide flakes with diameter of about 300 nanometers.

The researchers from the IPC PAS and the IRI used graphene oxide manufactured at Materials Science Division in North East Institute of Science and Technology (NEIST) in Dispur, India. "One-atom-thick graphene oxide colloids were a good starting material, but numerous oxygen-containing functional groups became a real difficulty. The problem was that they changed dramatically the physico-chemical properties of the material. Instead of an excellent conductor we had... an insulator," explains Kamińska.

To remove oxygen from graphene flakes, the researchers from the IPC PAS and the IRI decided to use non-covalent pi-pi stacking interactions between the carbon rings of graphene oxide and the aromatic rings of a compound called tertathiafulvalene (TTF). A TTF molecule is composed of two rings containing three carbon and two sulphur atoms each. "Practically, it was sufficient to mix graphene oxide with tertathiafulvalene, and then put the whole in an ultrasonic cleaner. The interactions between the TTF rings and the graphene oxide rings resulted in a reduction of graphene oxide to graphene with a simultaneous oxidation of the TTF molecules," describes Kamińska.

As a result, the obtained composite contained graphene flakes with TTF molecules intercalated into them. A droplet of the composite solution was subsequently deposited onto an electrode and dried. Graphene flakes formed on the surface a smooth coating with controllable thickness from 100 to 500 nm that was composed of a few dozen to a few hundreds alternate graphene sheets and TTF molecules.

The final stage in the production of graphene coating was to expel tertathiafulvalene molecules, which was attained by a simple chemical reaction with an appropriately selected compound.

"One of our motivations for the research was to look for new methods for detecting biological substances. That's why after expelling TTF from the graphene coating we checked immediately if we could reincorporate the chemical into the matrix. It turned out that yes. Therefore it is possible to develop a process allowing one to bind a selected compound to a TTF molecule, and then to incorporate the entire complex into a graphene sheet on an electrode and monitor the electric current flow," sums up Prof. Marcin Opałło (IPC PAS).

A publication describing the new method appeared early this year in the journal Chemical Communications, with the cover showing computer visualisation of the graphene sheets with TTF. At present, the researchers from the IPC PAS and the IRI continue their work on further decrease of graphene matrix thickness. The final stage reached also the experiments which show that it is possible to incorporate into the graphene sheet TTF molecules with attached mannose (one of the monosaccharides).


Story Source:

The above story is based on materials provided by Institute of Physical Chemistry of the Polish Academy of Sciences. Note: Materials may be edited for content and length.


Cite This Page:

Institute of Physical Chemistry of the Polish Academy of Sciences. "Graphene? From any lab." ScienceDaily. ScienceDaily, 20 June 2012. <www.sciencedaily.com/releases/2012/06/120620133351.htm>.
Institute of Physical Chemistry of the Polish Academy of Sciences. (2012, June 20). Graphene? From any lab. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/06/120620133351.htm
Institute of Physical Chemistry of the Polish Academy of Sciences. "Graphene? From any lab." ScienceDaily. www.sciencedaily.com/releases/2012/06/120620133351.htm (accessed July 23, 2014).

Share This




More Matter & Energy News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins