Featured Research

from universities, journals, and other organizations

Muscular dystrophy: MG53 protein is shown to repair cell and tissue damage

Date:
June 20, 2012
Source:
Robert Wood Johnson Medical School
Summary:
Throughout the lifecycle, injury to the body’s cells occurs naturally, as well as through trauma. Cells have the ability to repair and regenerate themselves, but a defect in the repair process can lead to cardiovascular, neurological, muscular or pulmonary diseases. Recent discoveries of key genes that control cell repair have advanced the often painstaking search for ways to enhance the repair process. A new study reports that the protein MG53, previously shown to be the key initiator in the cell membrane repair process, has the potential to be used directly as a therapeutic approach to treating traumatic tissue damage.

Throughout the lifecycle, injury to the body's cells occurs naturally, as well as through trauma. Cells have the ability to repair and regenerate themselves, but a defect in the repair process can lead to cardiovascular, neurological, muscular or pulmonary diseases. Recent discoveries of key genes that control cell repair have advanced the often painstaking search for ways to enhance the repair process. A new study by researchers from the University of Medicine and Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School reports that the protein MG53, previously shown to be the key initiator in the cell membrane repair process, has the potential to be used directly as a therapeutic approach to treating traumatic tissue damage.

"We studied the use of MG53 in treating muscular dystrophy by targeting the protein directly to the damaged muscle. The direct application of MG53 slowed the development of the disease by repairing damaged muscle membranes," said Noah Weisleder, PhD, assistant professor of physiology and biophysics and corresponding author of the study. "Our findings also suggest that MG53 could be used in regenerative medicine to treat other human diseases in which traumatic cell injury occurs."

The study established methods to produce MG53 protein for use as a drug in different formulations that were effective when applied both inside and outside of damaged cells. Evidence showed that MG53 initiated repair to cell membranes in striated muscles, where it occurs naturally, but also initiated repair mechanisms outside of the muscle cells, providing protection to the tissue and slowing progression of disease. Additional research as part of this study found that the application of the protein as a therapy is safe.

MG53 was discovered in 2008 by Jianjie Ma, PhD, professor and acting chair of physiology and biophysics at UMDNJ-Robert Wood Johnson Medical School, who was the first to specifically pinpoint that the protein was responsible for promoting cell repair.

"We believe this new research could translate into therapeutic treatment for a broad range of diseases, including heart attack, lung injury and kidney disease, as well as muscular dystrophy," said Dr. Ma, who oversaw this study. "Before clinical trials can begin, we must complete the pre-clinical studies that include additional safety tests and production of MG53 protein that can be used in human patients as a therapeutic drug."

The study was conducted in conjunction with TRIM-edicine, a privately held biotechnology company spun-off from UMDNJ and created to commercialize the development of novel biopharmaceutical products in which Dr. Ma and Dr. Weisleder hold an interest. The research was funded by grants from the National Institutes of Health (NIH), an NIH Small Business Research Grant, and the Jain Foundation.


Story Source:

The above story is based on materials provided by Robert Wood Johnson Medical School. Note: Materials may be edited for content and length.


Journal Reference:

  1. Noah Weisleder, Norio Takizawa, Peihui Lin, Xianhua Wang, Chunmei Cao, Yan Zhang, Tao Tan, Christopher Ferrante, Hua Zhu, Pin-Jung Chen, Rosalie Yan, Matthew Sterling, Xiaoli Zhao, Moonsun Hwang, Miyuki Takeshima, Chuanxi Cai, Heping Cheng, Hiroshi Takeshima, Rui-Ping Xiao, and Jianjie Ma. Recombinant MG53 Protein Modulates Therapeutic Cell Membrane Repair in Treatment of Muscular Dystrophy. Sci Transl Med, 20 June 2012 DOI: 10.1126/scitranslmed.3003921

Cite This Page:

Robert Wood Johnson Medical School. "Muscular dystrophy: MG53 protein is shown to repair cell and tissue damage." ScienceDaily. ScienceDaily, 20 June 2012. <www.sciencedaily.com/releases/2012/06/120620153812.htm>.
Robert Wood Johnson Medical School. (2012, June 20). Muscular dystrophy: MG53 protein is shown to repair cell and tissue damage. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2012/06/120620153812.htm
Robert Wood Johnson Medical School. "Muscular dystrophy: MG53 protein is shown to repair cell and tissue damage." ScienceDaily. www.sciencedaily.com/releases/2012/06/120620153812.htm (accessed August 28, 2014).

Share This




More Health & Medicine News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
How A 'Rule Of Thumb' Could Slow Down Drinking

How A 'Rule Of Thumb' Could Slow Down Drinking

Newsy (Aug. 28, 2014) A study suggests people who follow a "rule of thumb" when pouring wine dispense less than those who don't have a particular amount in mind. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins