Featured Research

from universities, journals, and other organizations

Information flow in the brain is not a 'one-way street'

Date:
June 22, 2012
Source:
Charité - Universitätsmedizin Berlin
Summary:
Neuroscientists have discovered a new principle of information flow in nerve cells.

A longstanding question in brain research is how information is processed in the brain. Neuroscientists at the Charité -- Universitätsmedizin Berlin, Cluster of Excellence NeuroCure and University of Newcastle have made a contribution towards answering this question. In a new study, they have shown that signals are generated not only in the cell body of nerve cells, but also in their output extension, the axon. A specific filter cell regulates signal propagation.

These findings have now been published in the journal Science.

Until now it has been assumed that information flow in nerve cells proceeds along a "one-way street." Electrical impulses are initiated at the cell body and propagate along the axon to the next neuron, where they are received by extensions, the dendrites, acting as antennae. However, the team around Charité researchers Tengis Gloveli and Tamar Dugladze has demonstrated that this model needs to be revised. They discovered that signals can also be initiated in axons, i.e. outside the cell body. This happens during highly synchronous neuronal activity as, for example, in a state of heightened attention. Moreover, these axonally generated signals flow bidirectionally and represent a new principle of information processing: on the one hand, impulses propagate from their origin towards other nerve cells; on the other hand, the signals also backpropagate towards the cell body, i.e. in the "wrong direction" down the one-way street. A potential problem is that backpropagating signals could lead to excessive cell activation.

However, the researchers found that backpropagating signals do not reach the cell body under normal conditions. The reason for this, the scientists discovered, is a natural filter that prevents these signals from passing. "Axo-axonic cells, an inhibitory cell type, regulate signal propagation and thus occupy an outstanding strategic position," explains Tamar Dugladze. Through the filter function, these cells allow signals initiated at the cell body to pass, but suppress backpropagating impulses generated in the axon. By this means, excessive activation of the cell body is prevented. In experiments, the scientists could show that when this filter function is deactivated, backpropagating signals are allowed to pass, resulting in higher cell activation.

These filter cells can become damaged in various neurological diseases. The consequent misregulation of signal flow, in turn, has fatal effects on information processing in the brain. "Results of this study shed new light on the central question of how signals are processed in the brain. In addition, these findings could help us better understand the development and progress of neuronal diseases such as epilepsy, which involves excessive hypersynchronous activity of large sets of neurons. This knowledge could open up new therapeutic approaches," says Tengis Gloveli. The neuroscientists will therefore focus their future research on both basic understanding of the mechanisms of signal flow in the nervous system, and the relevance of these mechanisms in the genesis of epilepsy.


Story Source:

The above story is based on materials provided by Charité - Universitätsmedizin Berlin. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Dugladze, D. Schmitz, M. A. Whittington, I. Vida, T. Gloveli. Segregation of Axonal and Somatic Activity During Fast Network Oscillations. Science, 2012; 336 (6087): 1458 DOI: 10.1126/science.1222017

Cite This Page:

Charité - Universitätsmedizin Berlin. "Information flow in the brain is not a 'one-way street'." ScienceDaily. ScienceDaily, 22 June 2012. <www.sciencedaily.com/releases/2012/06/120622163535.htm>.
Charité - Universitätsmedizin Berlin. (2012, June 22). Information flow in the brain is not a 'one-way street'. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2012/06/120622163535.htm
Charité - Universitätsmedizin Berlin. "Information flow in the brain is not a 'one-way street'." ScienceDaily. www.sciencedaily.com/releases/2012/06/120622163535.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) — Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) — The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) — Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) — New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins