Featured Research

from universities, journals, and other organizations

Researchers block pathway to cancer cell replication

Date:
July 2, 2012
Source:
University of California - San Diego
Summary:
Research suggests that patients with leukemia sometimes relapse because standard chemotherapy fails to kill the self-renewing leukemia initiating cells, often referred to as cancer stem cells. In such cancers, the cells lie dormant for a time, only to later begin cloning, resulting in a return and metastasis of the disease. One such type of cancer is called pediatric T cell acute lymphoblastic leukemia, often found in children, who have few treatment options beyond chemotherapy.

Research suggests that patients with leukemia sometimes relapse because standard chemotherapy fails to kill the self-renewing leukemia initiating cells, often referred to as cancer stem cells. In such cancers, the cells lie dormant for a time, only to later begin cloning, resulting in a return and metastasis of the disease.

One such type of cancer is called pediatric T cell acute lymphoblastic leukemia, or T-ALL, often found in children, who have few treatment options beyond chemotherapy.

A team of researchers -- led by Catriona H. M. Jamieson, MD, PhD, associate professor of medicine at the University of California, San Diego School of Medicine and Director of Stem Cell Research at UC San Diego Moores Cancer Center -- studied these cells in mouse models that had been transplanted with human leukemia cells. They discovered that the leukemia initiating cells which clone, or replicate, themselves most robustly activate the NOTCH1 pathway, usually in the context of a mutation.

Earlier studies showed that as many as half of patients with T-ALL have mutations in the NOTCH1 pathway -- an evolutionarily conserved developmental pathway used during differentiation of many cell and tissue types. The new study shows that when NOTCH1 activation was inhibited in animal models using a monoclonal antibody, the leukemia initiating cells did not survive. In addition, the antibody treatment significantly reduced a subset of these cancer stem cells (identified by the presence of specific markers, CD2 and CD7, on the cell surface.)

"We were able to substantially reduce the potential of these cancer stem cells to self-renew," said Jamieson. "So we're not just getting rid of cancerous cells: we're getting to the root of their resistance to treatment -- leukemic stem cells that lie dormant."

The study results suggest that such therapy would also be effective in other types of cancer stem cells, such as those that cause breast cancer, that also rely on NOTCH1 for self-renewal.

"Therapies based on monoclonal antibodies that inhibit NOTCH 1 are much more selective than using gamma-secretase inhibitors, which also block other essential cellular functions in addition to the NOTCH1 signaling pathway," said contributor A. Thomas Look, MD of Dana-Farber/Children Hospital Cancer Center in Boston. "We are excited about the promise of NOTCH1-specific antibodies to counter resistance to therapy in T-ALL and possibly additional types of cancer."

In investigating the role of NOTCH1 activation in cancer cell cloning, the researchers showed that leukemia initiating cells possess enhanced survival and self-renewal potential in specific blood-cell, or hematopoietic, niches: the microenvironment of the body in which the cells live and self-renew.

The scientists studied the molecular characterization of CD34+ cells -- a protein that shows expression in early hematopoietic cells and that facilitates cell migration -- from a dozen T-ALL patient samples.

They found that mutations in NOTCH1 and other genes capable of promoting the survival of cancer stem cells co-existed in the CD34+ niche. Mice transplanted with CD34-enriched NOTCH1 mutated T-ALL cells demonstrated significantly greater leukemic cloning potential than did mice without the NOTCH1 mutation. The mutated cells were uniquely susceptible to targeted inhibition with a human monoclonal antibody, according to the scientists.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "Researchers block pathway to cancer cell replication." ScienceDaily. ScienceDaily, 2 July 2012. <www.sciencedaily.com/releases/2012/07/120702162325.htm>.
University of California - San Diego. (2012, July 2). Researchers block pathway to cancer cell replication. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2012/07/120702162325.htm
University of California - San Diego. "Researchers block pathway to cancer cell replication." ScienceDaily. www.sciencedaily.com/releases/2012/07/120702162325.htm (accessed August 29, 2014).

Share This




More Health & Medicine News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins