Featured Research

from universities, journals, and other organizations

First photo of shadow of single atom

Date:
July 3, 2012
Source:
Griffith University
Summary:
Scientists have captured the first image of the shadow of a single atom. They trapped single atomic ions of the element ytterbium and exposed them to a specific frequency of light. Under this light the atom's shadow was cast onto a detector, and a digital camera was then able to capture the image.

Illustration of a single atom shadow with the atom shadow on the right end of the cylinder.
Credit: Image courtesy of Griffith University

In an international scientific breakthrough, a Griffith University research team has been able to photograph the shadow of a single atom for the first time.

"We have reached the extreme limit of microscopy; you can not see anything smaller than an atom using visible light," Professor Dave Kielpinski of Griffith University's Centre for Quantum Dynamics in Brisbane, Australia.

"We wanted to investigate how few atoms are required to cast a shadow and we proved it takes just one," Professor Kielpinski said.

Published this week in Nature Communications, "Absorption imaging of a single atom "is the result of work over the last 5 years by the Kielpinski/Streed research team.

At the heart of this Griffith University achievement is a super high-resolution microscope, which makes the shadow dark enough to see.

Holding an atom still long enough to take its photo, while remarkable in itself, is not new technology; the atom is isolated within a chamber and held in free space by electrical forces.

Professor Kielpinski and his colleagues trapped single atomic ions of the element ytterbium and exposed them to a specific frequency of light. Under this light the atom's shadow was cast onto a detector, and a digital camera was then able to capture the image.

"By using the ultra hi-res microscope we were able to concentrate the image down to a smaller area than has been achieved before, creating a darker image which is easier to see," Professor Kielpinski said.

The precision involved in this process is almost beyond imagining.

"If we change the frequency of the light we shine on the atom by just one part in a billion, the image can no longer be seen," Professor Kielpinski said.

Research team member, Dr Erik Streed, said the implications of these findings are far reaching.

"Such experiments help confirm our understanding of atomic physics and may be useful for quantum computing," Dr Streed said.

There are also potential follow-on benefits for biomicroscopy.

"Because we are able to predict how dark a single atom should be, as in how much light it should absorb in forming a shadow, we can measure if the microscope is achieving the maximum contrast allowed by physics."

"This is important if you want to look at very small and fragile biological samples such as DNA strands where exposure to too much UV light or x-rays will harm the material.

"We can now predict how much light is needed to observe processes within cells,under optimum microscopy conditions, without crossing the threshold and destroying them."

And this may get biologists thinking about things in a different way.

"In the end, a little bit of light just might be enough to get the job done."


Story Source:

The above story is based on materials provided by Griffith University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erik W. Streed, Andreas Jechow, Benjamin G. Norton, David Kielpinski. Absorption imaging of a single atom. Nature Communications, 2012; 3: 933 DOI: 10.1038/ncomms1944

Cite This Page:

Griffith University. "First photo of shadow of single atom." ScienceDaily. ScienceDaily, 3 July 2012. <www.sciencedaily.com/releases/2012/07/120703172543.htm>.
Griffith University. (2012, July 3). First photo of shadow of single atom. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2012/07/120703172543.htm
Griffith University. "First photo of shadow of single atom." ScienceDaily. www.sciencedaily.com/releases/2012/07/120703172543.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins