Featured Research

from universities, journals, and other organizations

First photo of shadow of single atom

Date:
July 3, 2012
Source:
Griffith University
Summary:
Scientists have captured the first image of the shadow of a single atom. They trapped single atomic ions of the element ytterbium and exposed them to a specific frequency of light. Under this light the atom's shadow was cast onto a detector, and a digital camera was then able to capture the image.

Illustration of a single atom shadow with the atom shadow on the right end of the cylinder.
Credit: Image courtesy of Griffith University

In an international scientific breakthrough, a Griffith University research team has been able to photograph the shadow of a single atom for the first time.

"We have reached the extreme limit of microscopy; you can not see anything smaller than an atom using visible light," Professor Dave Kielpinski of Griffith University's Centre for Quantum Dynamics in Brisbane, Australia.

"We wanted to investigate how few atoms are required to cast a shadow and we proved it takes just one," Professor Kielpinski said.

Published this week in Nature Communications, "Absorption imaging of a single atom "is the result of work over the last 5 years by the Kielpinski/Streed research team.

At the heart of this Griffith University achievement is a super high-resolution microscope, which makes the shadow dark enough to see.

Holding an atom still long enough to take its photo, while remarkable in itself, is not new technology; the atom is isolated within a chamber and held in free space by electrical forces.

Professor Kielpinski and his colleagues trapped single atomic ions of the element ytterbium and exposed them to a specific frequency of light. Under this light the atom's shadow was cast onto a detector, and a digital camera was then able to capture the image.

"By using the ultra hi-res microscope we were able to concentrate the image down to a smaller area than has been achieved before, creating a darker image which is easier to see," Professor Kielpinski said.

The precision involved in this process is almost beyond imagining.

"If we change the frequency of the light we shine on the atom by just one part in a billion, the image can no longer be seen," Professor Kielpinski said.

Research team member, Dr Erik Streed, said the implications of these findings are far reaching.

"Such experiments help confirm our understanding of atomic physics and may be useful for quantum computing," Dr Streed said.

There are also potential follow-on benefits for biomicroscopy.

"Because we are able to predict how dark a single atom should be, as in how much light it should absorb in forming a shadow, we can measure if the microscope is achieving the maximum contrast allowed by physics."

"This is important if you want to look at very small and fragile biological samples such as DNA strands where exposure to too much UV light or x-rays will harm the material.

"We can now predict how much light is needed to observe processes within cells,under optimum microscopy conditions, without crossing the threshold and destroying them."

And this may get biologists thinking about things in a different way.

"In the end, a little bit of light just might be enough to get the job done."


Story Source:

The above story is based on materials provided by Griffith University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Erik W. Streed, Andreas Jechow, Benjamin G. Norton, David Kielpinski. Absorption imaging of a single atom. Nature Communications, 2012; 3: 933 DOI: 10.1038/ncomms1944

Cite This Page:

Griffith University. "First photo of shadow of single atom." ScienceDaily. ScienceDaily, 3 July 2012. <www.sciencedaily.com/releases/2012/07/120703172543.htm>.
Griffith University. (2012, July 3). First photo of shadow of single atom. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/07/120703172543.htm
Griffith University. "First photo of shadow of single atom." ScienceDaily. www.sciencedaily.com/releases/2012/07/120703172543.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins