Featured Research

from universities, journals, and other organizations

Critical process in stem cell development identified

Date:
July 5, 2012
Source:
Gladstone Institutes
Summary:
Scientists have discovered that environmental factors critically influence the growth of a type of stem cell--called an iPS cell -- that is derived from adult skin cells. This discovery offers newfound understanding of how these cells form, while also advancing science closer to stem cell-based therapies to combat disease.

Scientists at the Gladstone Institutes have discovered that environmental factors critically influence the growth of a type of stem cell -- called an iPS cell -- that is derived from adult skin cells. This discovery offers newfound understanding of how these cells form, while also advancing science closer to stem cell-based therapies to combat disease.

Researchers in the laboratory of Gladstone Senior Investigator Shinya Yamanaka, MD, PhD, have for the first time shown that protein factors released by other cells affect the "reprogramming" of adult cells into stem cells known as induced pluripotent stem cells, or iPS cells. The scientists -- who collaborated on this research with colleagues from the University of California, San Francisco (UCSF) -- announce their findings July 5 online in Cell Stem Cell.

In 2007, Dr. Yamanaka discovered a recipe of specific proteins to add to human skin cells as a way to induce them into becoming iPS cells -- which act very much like embryonic stem cells. Many see iPS cell technology as a new platform for drug discovery and the study of disease fundamentals -- while avoiding the ethical issues surrounding research involving embryonic stem cells. But questions remain about the most efficient way to cultivate iPS cells.

"We've reinforced our hypothesis that the cell's environment is vital to the reprogramming process," said Dr. Yamanaka, who did his postdoctoral studies at Gladstone in the 1990s, returning here in 2007 as a senior investigator. "We can now expand our understanding of cell development -- and use iPS cells to model conditions such as Alzheimer's and heart disease."

Normally when researchers convert skin cells into iPS cells, the cells rest on a special layer of materials in a petri dish. The layer includes "feeder" cells that provide nutrients required for the iPS cells to grow and reproduce. In this study, performed at the Roddenberry Center for Stem Cell Biology & Medicine at Gladstone, scientists generated human iPS cell lines by using a method in which the feeder layer secretes a protein called LIF. Dr. Yamanaka, who invented this so-called "Kyoto" method, also directs the Center for iPS Cell Research and Application at Kyoto University and is a professor at UCSF, with which Gladstone is affiliated. UCSF collaborators on this research include co-senior author Barbara Panning, PhD, and Karen Leung, PhD.

The researchers then analyzed LIF's importance in the growth of female iPS cells. Female iPS cells contain two copies of the X-chromosome, which is one of two sex chromosomes. While males carry one X and one Y-chromosome, females' two X-chromosomes could result in a potentially toxic double dose of genes -- except for a unique evolutionary mechanism whereby one of the two X's is silenced in a process known as "X-inactivation." This process, which occurs early during the development of the embryo, ensures that females, like males, have one functional copy of the X-chromosome in each cell. But exactly how X-inactivation happens is unknown.

To research this, Gladstone scientists generated female iPS cells on feeder layers without LIF and found that one of the X-chromosomes in each iPS cell remained silent. Those iPS cells that grew on a layer of cells with the LIF protein, however, grew with two activated X-chromosomes. Then, by taking a cell from a non-LIF cell layer and transferring it to a LIF-cell layer, the iPS cell's inactive X-chromosome switched on and became even more like embryonic stem cells. These results are crucial for future studies of how iPS cells grow and mature. And because this iPS technology lets scientists create stem cells from patients with a specific disease, this new finding could lead to a far-superior human model for studying disease and testing new drugs.

"These results will make it possible to readily generate stable, double-active, higher-quality X-chromosome iPS cells, and study the process more closely," said Gladstone Research Scientist Kiichiro Tomoda, PhD, who is the paper's lead author "Our findings also reinforce work from other Gladstone scientists showing that the cell environment is critical to the reprogramming process."

Other scientists who participated in this research at Gladstone include Kirsten Eilertson, PhD, Mark White, Salma Sami, Bruce Conklin, MD and Deepak Srivastava, MD. Funding came from a variety of sources, including the California Institute for Regenerative Medicine, the National Institutes of Health, the Roddenberry Foundation and the L.K. Whittier Foundation.


Story Source:

The above story is based on materials provided by Gladstone Institutes. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kiichiro Tomoda, Kazutoshi Takahashi, Karen Leung, Aki Okada, Megumi Narita, N. Alice Yamada, Kirsten E. Eilertson, Peter Tsang, Shiro Baba, Mark P. White et al. Derivation Conditions Impact X-Inactivation Status in Female Human Induced Pluripotent Stem Cells. Cell Stem Cell, 6 July 2012 DOI: 10.1016/j.stem.2012.05.019

Cite This Page:

Gladstone Institutes. "Critical process in stem cell development identified." ScienceDaily. ScienceDaily, 5 July 2012. <www.sciencedaily.com/releases/2012/07/120705172046.htm>.
Gladstone Institutes. (2012, July 5). Critical process in stem cell development identified. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2012/07/120705172046.htm
Gladstone Institutes. "Critical process in stem cell development identified." ScienceDaily. www.sciencedaily.com/releases/2012/07/120705172046.htm (accessed April 24, 2014).

Share This



More Health & Medicine News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins