Featured Research

from universities, journals, and other organizations

Life's molecules could lie within reach of Mars Curiosity rover

Date:
July 5, 2012
Source:
American Geophysical Union
Summary:
Stick a shovel in the ground and scoop. That's about how deep scientists need to go in order to find evidence for ancient life on Mars, if there is any to be found, a new study suggests. The new findings, which suggest optimal depths and locations to probe for organic molecules like those that compose living organisms as we know them, could help the newest Mars rover scout for evidence of life beneath the surface and within rocks.

An artist’s conception of Curiosity exploring Mars. New research suggests that the car-sized rover could be able to find evidence of ancient life on the Red Plant – if it, in fact, existed.
Credit: NASA, JPL

Stick a shovel in the ground and scoop. That's about how deep scientists need to go in order to find evidence for ancient life on Mars, if there is any to be found, a new study suggests. That's within reach of Curiosity, the Mars Science Laboratory rover expected to land on the Red Planet next month.

The new findings, which suggest optimal depths and locations to probe for organic molecules like those that compose living organisms as we know them, could help the newest Mars rover scout for evidence of life beneath the surface and within rocks. The results suggest that, should Mars harbor simple organic molecules, NASA's prospects for discovering them during Curiosity's explorations are better than previously thought, said Alexander Pavlov of the NASA Goddard Space Flight Center in Greenbelt, Maryland, lead author of the study.

While these simple molecules could provide evidence of ancient Martian life, they could also stem from other sources like meteorites and volcanoes. Complex organic molecules could hint more strongly at the possibility of past life on the planet. These molecules, made up of 10 or more carbon atoms, could resemble known building blocks of life such as the amino acids that make up proteins.

Although complex carbon structures are trickier to find because they're more vulnerable to cosmic radiation that continuously bombards and penetrates the surface of the Red Planet, the new research by Pavlov and his colleagues provides suggestions for where to start looking. The amounts of radiation that rock and soil is exposed to over time, and how deep that radiation penetrates -- an indicator of how deep a rover would have to sample to find intact organic molecules -- is a subject of ongoing research.

The scientists report that chances of finding these molecules in the first 2 centimeters (0.8 inches) of Martian soil is close to zero. That top layer, they calculate, will absorb a total of 500 million grays of cosmic radiation over the course of one billion years -- capable of destroying all organic material. A mere 50 grays, absorbed immediately or over time, would cause almost certain death to a human.

However, within 5 to 10 centimeters (2 to 4 inches) beneath the surface, the amount of radiation reduces tenfold, to 50 million grays. Although that's still extreme, the team reports that simple organic molecules, such as a single formaldehyde molecule, could exist at this depth -- and in some places, specifically young craters, the complex building blocks of life could remain as well.

The study is scheduled to be published 7 July in Geophysical Research Letters, a journal of the American Geophysical Union.

"Right now the challenge is that past Martian landers haven't seen any organic material whatsoever," Pavlov said. "We know that organic molecules have to be there but we can't find any of them in the soil."

As Mars revolves around the Sun, it is constantly bombarded by very small meteors and interplanetary dust particles, which have plenty of organic compounds in them, Pavlov said. Therefore, over time they would have accumulated at the Martian surface.

The Mars Science Laboratory is the newest and largest of NASA's Martian landers and is scheduled to touch down August 2012. Curiosity doesn't have a shovel but, equipped with drilling technology, it will collect, store, and analyze samples of Martian material down to 5 centimeters below the surface of rock and soil. Past Martian rovers have only collected loose soil atop the surface that has been directly exposed to cosmic radiation, making the possibility for detecting organic molecules exceedingly slim.

When evaluating how deep organic molecules might persist beneath the surface, previous studies have mainly focused on the maximum depth, approximately 1.5 meters (5 feet), that cosmic radiation reaches because beyond that point organic molecules could survive, unharmed, for billions of years, Pavlov said. However, drilling to 1.5 meters or deeper is currently too expensive to engineer for a Martian rover.

So the team focused on more attainable depths -- the first 20 cm (8 in) below the surface. They modeled the complex scenario of cosmic ray accumulation and its effects on organic molecules using a collection of important variables, including Martian rock and soil composition, changes in the planet's atmospheric density over time, and cosmic rays' various energy levels.

In addition to the finding that some simple carbon-containing molecules could exist within 10 cm (4 in) depth, the scientists emphasize that certain regions on Mars may have radiation levels far lower than 50 million grays near the surface -- and so more complex molecules like amino acids could remain intact.

In order to find these molecules within the rover's drilling range (1 to 5 cm), the scientists found the best bet is to look at "fresh" craters that are no more than 10 million years old, unlike past expeditionary sites that mainly sampled from landscapes undisturbed for billions of years.

Compared to Martian landscapes undisturbed for one billion years or more, relatively young craters exhibit freshly exposed rock and soil that was once deeper beneath the surface. . The new research indicates that this material will have been near the surface for a short enough period of time that it's overall exposure to harmful radiation would not have been enough to wipe out organic molecules.

"When you have a chance to drill, don't waste it on perfectly preserved (landscapes)," Pavlov said. "You want to go to fresh craters because there's probably a better chance to detect complex organic molecules. Let Nature work for you."

Lewis Dartnell, a postdoctoral researcher at the University College London in the U.K., said the paper was a nice study that combined results from other studies with the latest radiation modeling. Dartnell was not part of the study, but has published previous work involving effects of cosmic radiation on the Martian surface.

"The next logical step," Dartnell said, "is to actually experiment and have a radiation source hit amino acids with radiation of similar energies as cosmic rays and determine how quickly those amino acids are destroyed because models can only do so much."

Curiosity is set to land in Gale crater -- the same crater where the Spirit rover landed in 2004- on August 6. Whether this 3.5-billion-year-old crater has fresher craters within it is uncertain. However, Pavlov hopes that his team's findings will at least help guide NASA on where to drill once the rover has landed and influence where future generations of rover landers will touch down.


Story Source:

The above story is based on materials provided by American Geophysical Union. Note: Materials may be edited for content and length.


Journal Reference:

  1. Alexander A. Pavlov, Gennady Vasilyev, Valery M. Ostryakov, Anatoli K. Pavlov, Paul R. Mahaffy. Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays.. Geophysical Research Letters, 2012; DOI: 10.1029/2012GL052166

Cite This Page:

American Geophysical Union. "Life's molecules could lie within reach of Mars Curiosity rover." ScienceDaily. ScienceDaily, 5 July 2012. <www.sciencedaily.com/releases/2012/07/120705194142.htm>.
American Geophysical Union. (2012, July 5). Life's molecules could lie within reach of Mars Curiosity rover. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/07/120705194142.htm
American Geophysical Union. "Life's molecules could lie within reach of Mars Curiosity rover." ScienceDaily. www.sciencedaily.com/releases/2012/07/120705194142.htm (accessed October 23, 2014).

Share This



More Space & Time News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com
Latin America Launches Communications Satellite

Latin America Launches Communications Satellite

AFP (Oct. 17, 2014) — Argentina launches a home-built satellite, a first for Latin America. It will ride a French-made Ariane 5 rocket into orbit, and will provide cell phone, digital TV, Internet and data services to the lower half of South America. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
This Week @ NASA, October 17, 2014

This Week @ NASA, October 17, 2014

NASA (Oct. 17, 2014) — Power spacewalk, MAVEN’s “First Light”, Hubble finds extremely distant galaxy and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins