Featured Research

from universities, journals, and other organizations

'Insulating' brain cells appear to play a critical role in brain cell survival and may contribute to neurodegenerative diseases such as ALS

Date:
July 11, 2012
Source:
Johns Hopkins Medicine
Summary:
Researchers say they have discovered that the central nervous system’s oligodendroglia cells, long believed to simply insulate nerves as they “fire” signals, are unexpectedly also vital to the survival of neurons. Damage to these insulators appears to contribute to brain injury in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease for the Yankee baseball great who died from the disease.

Johns Hopkins researchers say they have discovered that the central nervous system's oligodendroglia cells, long believed to simply insulate nerves as they "fire" signals, are unexpectedly also vital to the survival of neurons. Damage to these insulators appears to contribute to brain injury in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease for the Yankee baseball great who died from the disease.

Related Articles


The discovery, described online in the journal Nature, suggests that a previously unknown -- and unexpected -- function of these cells is to supply nutrition to the principal brain cells, neurons. This new pathway may prove to be an important and novel therapeutic target for ALS, the researchers say, and potentially other diseases that attack the body's nerve fibers, such as multiple sclerosis.

"More than 100 years after their discovery, we have now found a fundamentally new property in the way oligodendroglia work in the brain, laying the foundation for a new approach to try to treat debilitating neurodegenerative diseases," says Jeffrey D. Rothstein, M.D., Ph.D., a professor of neurology and neuroscience at the Johns Hopkins University School of Medicine, and the study's leader. "We've added a whole new category to what they do in the brain."

The cells responsible for the transfer of information and electrical impulses around the body, neurons work by transferring electrical charges from neuron to neuron. Axons, the wire-like extensions of the neurons, help move the messages, in some cases over many feet, from cell to cell. Oligodendroglia insulate axons, like rubber coating around an electrical wire, to speed up the conduction of information. Axonal death is a hallmark of ALS and most other neurodegenerative disorders, Rothstein says.

Rothstein and his colleagues say the other principal brain cells, the astroglia, were believed to be primarily responsible for providing energy to neurons in the form of glucose, but their experiments show that oligodendroglia are surprisingly crucial in feeding neurons -- in the form of less energy-rich lactate, without which neurons and their axons die. Lactate has long been seen as a minor player in this process, but the Johns Hopkins team says it appears to be far more important to nerve cell survival. Moreover, they found that the protein MCT1, the dominant transporter of lactate in the brain, is only found in oligodendroglia.

Rothstein says their discovery was rooted in experiments during which scientists, using mice, knocked out the gene that makes the MCT1 protein and saw axons begin to die, even though they were still getting plenty of glucose.

As part of these experiments, the researchers engineered mice whose cells would light up if they were expressing MCT1. The scientists then determined that only oligodendroglia cells lit up, showing that MCTI is located on this type of cell alone. They also knocked out the MCT1 in cell cultures and found that neurons would begin to die, but would recover when fed lactate, proving the importance of MCT1 in providing this nutritional compound. They conducted the same experiments in mice and got similar results.

Finally, the researchers turned their attention to ALS, a disease where they had recently uncovered abnormalities related to oligodendroglia. In ALS mice, they found that MCT1 was missing in brain cells well before the disease developed, and they found similar results in ALS patients. Rothstein says the findings suggest that oligodendroglia injury -- specifically injury to the mechanism that produces MCT1 -- may be an important event in the onset and progression of ALS.

Rothstein, who is director of the Johns Hopkins University School of Medicine's Brain Science Institute, says he hopes further research can establish that the activation of MCT1 in people will protect axons in those with ALS and other degenerative diseases.

The study was supported by the National Institutes of Health's National Institute for Neurological Disorders and Strokes (NS33958).

Other Johns Hopkins researchers involved in the study include Youngjin Lee, Ph.D.; Brett M. Morrison, M.D., Ph.D.; Yun Li, Ph.D.; Mohamed H. Farah, Ph.D.; Paul N. Hoffman, M.D., Ph.D.; Yiting Liu, Ph.D.; Akivaga Tsingalia; Lin Jin; and Ping-Wu Zhang, M.D., Ph.D.


Story Source:

The above story is based on materials provided by Johns Hopkins Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Youngjin Lee, Brett M. Morrison, Yun Li, Sylvain Lengacher, Mohamed H. Farah, Paul N. Hoffman, Yiting Liu, Akivaga Tsingalia, Lin Jin, Ping-Wu Zhang, Luc Pellerin, Pierre J. Magistretti, Jeffrey D. Rothstein. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature, 2012; DOI: 10.1038/nature11314

Cite This Page:

Johns Hopkins Medicine. "'Insulating' brain cells appear to play a critical role in brain cell survival and may contribute to neurodegenerative diseases such as ALS." ScienceDaily. ScienceDaily, 11 July 2012. <www.sciencedaily.com/releases/2012/07/120711130906.htm>.
Johns Hopkins Medicine. (2012, July 11). 'Insulating' brain cells appear to play a critical role in brain cell survival and may contribute to neurodegenerative diseases such as ALS. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2012/07/120711130906.htm
Johns Hopkins Medicine. "'Insulating' brain cells appear to play a critical role in brain cell survival and may contribute to neurodegenerative diseases such as ALS." ScienceDaily. www.sciencedaily.com/releases/2012/07/120711130906.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins