Featured Research

from universities, journals, and other organizations

Unique properties of graphene lead to a new paradigm for low-power telecommunications

Date:
July 15, 2012
Source:
Columbia University
Summary:
Engineers have demonstrated remarkable optical nonlinear behavior of graphene that may lead to broad applications in optical interconnects and low-power photonic integrated circuits. The researchers used graphene to transform the originally passive device into an active one that generated microwave photonic signals and performed parametric wavelength conversion at telecommunication wavelengths. Showing the power-efficiency of the device, they say, is an important advance in building all-optical processing elements essential to faster, more efficient, modern telecommunications.

Ultralow-power optical information processing is based on graphene on silicon photonic crystal nanomembranes.
Credit: Nicoletta Barolini

New research by Columbia Engineering demonstrates remarkable optical nonlinear behavior of graphene that may lead to broad applications in optical interconnects and low-power photonic integrated circuits. With the placement of a sheet of graphene just one-carbon-atom-thick, the researchers transformed the originally passive device into an active one that generated microwave photonic signals and performed parametric wavelength conversion at telecommunication wavelengths.

"We have been able to demonstrate and explain the strong nonlinear response from graphene, which is the key component in this new hybrid device," says Tingyi Gu, the study's lead author and a Ph.D. candidate in electrical engineering. "Showing the power-efficiency of this graphene-silicon hybrid photonic chip is an important step forward in building all-optical processing elements that are essential to faster, more efficient, modern telecommunications. And it was really exciting to explore the 'magic' of graphene's amazingly conductive properties and see how graphene can boost optical nonlinearity, a property required for the digital on/off two-state switching and memory."

The study, led by Chee Wei Wong, professor of mechanical engineering, director of the Center for Integrated Science and Engineering, and Solid-State Science and Engineering, will be published online in the Advance Online Publication on Nature Photonics's website on July 15 and in print in the August issue. The team of researchers from Columbia Engineering and the Institute of Microelectronics in Singapore are working together to investigate optical physics, material science, and device physics to develop next-generation optoelectronic elements.

They have engineered a graphene-silicon device whose optical nonlinearity enables the system parameters (such as transmittance and wavelength conversion) to change with the input power level. The researchers also were able to observe that, by optically driving the electronic and thermal response in the silicon chip, they could generate a radio frequency carrier on top of the transmitted laser beam and control its modulation with the laser intensity and color. Using different optical frequencies to tune the radio frequency, they found that the graphene-silicon hybrid chip achieved radio frequency generation with a resonant quality factor more than 50 times lower than what other scientists have achieved in silicon.

"We are excited to have observed four-wave mixing in these graphene-silicon photonic crystal nanocavities," says Wong. "We generated new optical frequencies through nonlinear mixing of two electromagnetic fields at low operating energies, allowing reduced energy per information bit. This allows the hybrid silicon structure to serve as a platform for all-optical data processing with a compact footprint in dense photonic circuits."

Wong credits his outstanding students for the exceptional work they've done on the study, and adds, "We are fortunate to have the expertise right here at Columbia Engineering to combine the optical nonlinearity in graphene with chip-scale photonic circuits to generate microwave photonic signals in new and different ways."

Until recently, researchers could only isolate graphene as single crystals with micron-scale dimensions, essentially limiting the material to studies confined within laboratories. "The ability to synthesize large-area films of graphene has the obvious implication of enabling commercial production of these proven graphene-based technologies," explains James Hone, associate professor of mechanical engineering, whose team provided the high quality graphene for this study. "But large-area films of graphene can also enable the development of novel devices and fundamental scientific studies requiring graphene samples with large dimensions. This work is an exciting example of both -- large-area films of graphene enable the fabrication of novel opto-electronic devices, which in turn allow for the study of scientific phenomena."

Commenting on the study, Xiang Zhang, director of the National Science Foundation Nanoscale Science and Engineering Center at the University of California at Berkeley, says, "this new study in integrating graphene with silicon photonic crystals is very exciting. Using the large nonlinear response of graphene in silicon photonics demonstrated in this work will be a promising approach for ultra-low power on-chip optical communications."

"Graphene has been considered a wonderful electronic material where electron moves like an effectively massless particle in the atomically thin layer," notes Philip Kim, professor of physics and applied physics at Columbia, one of the early pioneers in graphene research and who discovered its low-temperature high electronic conductivity. "And now, the recent excellent work done by this group of Columbia researchers demonstrates that graphene is also unique electro-optical material for ultrafast nonlinear optical modulation when it is combined with silicon photonic crystal structures. This opens an important doorway for many novel optoelectronic device applications, such as ultrafast chip-scale high-speed optical communications."


Story Source:

The above story is based on materials provided by Columbia University. Note: Materials may be edited for content and length.


Journal Reference:

  1. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, C. W. Wong. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012; DOI: 10.1038/nphoton.2012.147

Cite This Page:

Columbia University. "Unique properties of graphene lead to a new paradigm for low-power telecommunications." ScienceDaily. ScienceDaily, 15 July 2012. <www.sciencedaily.com/releases/2012/07/120715141409.htm>.
Columbia University. (2012, July 15). Unique properties of graphene lead to a new paradigm for low-power telecommunications. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2012/07/120715141409.htm
Columbia University. "Unique properties of graphene lead to a new paradigm for low-power telecommunications." ScienceDaily. www.sciencedaily.com/releases/2012/07/120715141409.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins