Featured Research

from universities, journals, and other organizations

Why is Earth so dry? Planet formed from rocky debris in hotter region, inside of solar system's 'snow line'

Date:
July 17, 2012
Source:
Space Telescope Science Institute (STScI)
Summary:
A new analysis of the common accretion-disk model explaining how planets form in a debris disk around our Sun uncovered a possible reason for Earth's comparative dryness. The study found that our planet formed from rocky debris in a dry, hotter region, inside of the so-called "snow line." The snow line in our solar system currently lies in the middle of the asteroid belt, a reservoir of rubble between Mars and Jupiter; beyond this point, the Sun's light is too weak to melt the icy debris left over from the protoplanetary disk. Previous accretion-disk models suggested that the snow line was much closer to the Sun 4.5 billion years ago, when Earth formed.

A Tale of Two Disk Models: This illustration of two different disk models shows overhead views of the structure of the protoplanetary disk that encircled the newborn Sun 4.6 billion years ago. The Sun's family of planets agglomerated from dust and ices within the disk. The major difference between the two models is the location of the so-called snow line, which divides a warm, dry area of the disk from an icy, turbulent region. In the standard disk model, shown at left, Earth formed beyond the snow line, in an icy region. Our planet should, therefore, contain lots of water because it formed from ices that would have been a major fraction of its composition. However, it's estimated that less than 1 percent of Earth's mass is locked up in water, which has puzzled scientists. In the new disk model, shown at right, Earth formed in a warmer, dry region, outside the snow line, which is much farther away from the Sun. This model explains why Earth is comparatively dry. It provides new insights into estimates of the abundance of Earth-like planets in the galaxy.
Credit: NASA, ESA, and A. Feild (STScI); Science: NASA, ESA, and R. Martin and M. Livio (STScI)

With large swaths of oceans, rivers that snake for hundreds of miles, and behemoth glaciers near the north and south poles, Earth doesn't seem to have a water shortage. And yet, less than one percent of our planet's mass is locked up in water, and even that may have been delivered by comets and asteroids after Earth's initial formation.

Related Articles


Astronomers have been puzzled by Earth's water deficiency. The standard model explaining how the solar system formed from a protoplanetary disk, a swirling disk of gas and dust surrounding our Sun, billions of years ago suggests that our planet should be a water world. Earth should have formed from icy material in a zone around the Sun where temperatures were cold enough for ices to condense out of the disk. Therefore, Earth should have formed from material rich in water. So why is our planet comparatively dry?

A new analysis of the common accretion-disk model explaining how planets form in a debris disk around our Sun uncovered a possible reason for Earth's comparative dryness. Led by Rebecca Martin and Mario Livio of the Space Telescope Science Institute in Baltimore, Md., the study found that our planet formed from rocky debris in a dry, hotter region, inside of the so-called "snow line." The snow line in our solar system currently lies in the middle of the asteroid belt, a reservoir of rubble between Mars and Jupiter; beyond this point, the Sun's light is too weak to melt the icy debris left over from the protoplanetary disk. Previous accretion-disk models suggested that the snow line was much closer to the Sun 4.5 billion years ago, when Earth formed.

"Unlike the standard accretion-disk model, the snow line in our analysis never migrates inside Earth's orbit," Livio said. "Instead, it remains farther from the Sun than the orbit of Earth, which explains why our Earth is a dry planet. In fact, our model predicts that the other innermost planets, Mercury, Venus, and Mars, are also relatively dry. "

The results have been accepted for publication in the journal Monthly Notices of the Royal Astronomical Society.

In the conventional model, the protoplanetary disk around our Sun is fully ionized (a process where electrons are stripped off of atoms) and is funneling material onto our star, which heats up the disk. The snow line is initially far away from the star, perhaps at least one billion miles. Over time, the disk runs out of material, cools, and draws the snow line inward, past Earth's orbit, before there is sufficient time for Earth to form.

"If the snow line was inside Earth's orbit when our planet formed, then it should have been an icy body," Martin explained. "Planets such as Uranus and Neptune that formed beyond the snow line are composed of tens of percents of water. But Earth doesn't have much water, and that has always been a puzzle."

Martin and Livio's study found a problem with the standard accretion-disk model for the evolution of the snow line. "We said, wait a second, disks around young stars are not fully ionized," Livio said. "They're not standard disks because there just isn't enough heat and radiation to ionize the disk."

"Very hot objects such as white dwarfs and X-ray sources release enough energy to ionize their accretion disks," Martin added. "But young stars don't have enough radiation or enough infalling material to provide the necessary energetic punch to ionize the disks."

So, if the disks aren't ionized, mechanisms that would allow material to flow through the region and fall onto the star are absent. Instead, gas and dust orbit around the star without moving inward, creating a so-called "dead zone" in the disk. The dead zone typically extends from about 0.1 astronomical unit to a few astronomical units beyond the star. (An astronomical unit is the distance between Earth and the Sun, which is roughly 93 million miles.) This zone acts like a plug, preventing matter from migrating towards the star. Material, however, piles up in the dead zone and increases its density, much like people crowding around the entrance to a concert, waiting for the gates to open.

The dense matter begins to heat up by gravitational compression. This process, in turn, heats the area outside the plug, vaporizing the icy material and turning it into dry matter. Earth forms in this hotter region, which extends to around a few astronomical units beyond the Sun, from the dry material. Martin and Livio's altered version of the standard model explains why Earth didn't wind up with an abundance of water.

Martin cautioned that the revised model is not a blueprint for how all disks around young stars behave. "Conditions within the disk will vary from star to star," Livio said, "and chance, as much as anything else, determined the precise end results for our Earth."


Story Source:

The above story is based on materials provided by Space Telescope Science Institute (STScI). Note: Materials may be edited for content and length.


Cite This Page:

Space Telescope Science Institute (STScI). "Why is Earth so dry? Planet formed from rocky debris in hotter region, inside of solar system's 'snow line'." ScienceDaily. ScienceDaily, 17 July 2012. <www.sciencedaily.com/releases/2012/07/120717131217.htm>.
Space Telescope Science Institute (STScI). (2012, July 17). Why is Earth so dry? Planet formed from rocky debris in hotter region, inside of solar system's 'snow line'. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2012/07/120717131217.htm
Space Telescope Science Institute (STScI). "Why is Earth so dry? Planet formed from rocky debris in hotter region, inside of solar system's 'snow line'." ScienceDaily. www.sciencedaily.com/releases/2012/07/120717131217.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins