Featured Research

from universities, journals, and other organizations

Data storage: Adopting changes

Date:
July 18, 2012
Source:
The Agency for Science, Technology and Research (A*STAR)
Summary:
New insights into the stable magnetism of phase-change semiconductors could enable the development of ultra-high-speed data storage.x

New insights into the stable magnetism of phase-change semiconductors could enable the development of ultra-high-speed data storage.
Credit: © Dave Indech

New insights into the stable magnetism of phase-change semiconductors could enable the development of ultra-high-speed data storage.

Phase-change semiconductors have the ability to switch back and forth between amorphous (non-crystalline solid) and crystalline phases upon heating. As such, they are used widely in data storage and computer memory applications, for the reason that information can be written in binary form using the two distinct states.

One particular phase-change alloy currently used in rewritable disc technology is that of germanium, antimony and tellunium, or Ge2Sb2Te5 (GST). Researchers believe that this material may prove useful for the field of spintronics, generating a way of storing data which takes advantage of the inherent angular momentum, or spin, of electrons present in the material.

Recent research indicates that the atoms in GST could naturally create a stable bond with certain metals, thereby generating a permanent and stable ferromagnetic state potentially useful for high-speed read/write storage. However, to date, researchers have been unsure exactly how GST is able to form a stable ferromagnetic state.

Now, Kewu Bai at the A*STAR Institute for High Performance Computing, together with co-workers from A*STAR's Data Storage Institute and the Singapore University of Technology and Design, have completed an in-depth analysis of GST and its ability to maintain stable ferromagnetism when doped with iron.

"Alloying magnetic elements such as iron with semiconductors provides the materials necessary for future spintronics applications," explains Bai. "We know very little about the processes behind ferromagnetism from doping phase-change materials with metals, because the commonly used experimental techniques, such as X-ray diffraction, transmission microscopy and X-ray absorption, are not sufficient to characterize material microstructures."

The research team instead used first-principle calculations to determine the validity of the experiments they carried out. First-principle calculations use the inherent laws of nature -- for example, bonding laws between atoms and laws for electron movements -- to build up an exact picture of the chemical structures at work, rather than relying on best-fit parameters in computer models.

"We used first-principle calculations to locate the site in GST at which iron molecules preferred to bond," explains Bai. "The mechanism that led to the observed ferromagnetism was then uncovered."

The researchers discovered that the iron molecules preferred to bond with the antimony molecules in GST. Along certain orientations within the crystalline phase, the iron-antimony bonding becomes dominant, leading to a stable ferromagnetism in the material.

"We are still in close collaboration with the Data Storage Institute team to explore multifunctional phase-change materials further," explains Bai. "We hope to test our criteria for other transition metals that could also cause ferromagnetism in GST."

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute and the Institute of High Performance Computing.


Story Source:

The above story is based on materials provided by The Agency for Science, Technology and Research (A*STAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Ding, K. Bai, W. D. Song, L. P. Shi, R. Zhao, R. Ji, M. Sullivan, P. Wu. Origin of ferromagnetism and the design principle in phase-change magnetic materials. Physical Review B, 2011; 84 (21) DOI: 10.1103/PhysRevB.84.214416

Cite This Page:

The Agency for Science, Technology and Research (A*STAR). "Data storage: Adopting changes." ScienceDaily. ScienceDaily, 18 July 2012. <www.sciencedaily.com/releases/2012/07/120718101419.htm>.
The Agency for Science, Technology and Research (A*STAR). (2012, July 18). Data storage: Adopting changes. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2012/07/120718101419.htm
The Agency for Science, Technology and Research (A*STAR). "Data storage: Adopting changes." ScienceDaily. www.sciencedaily.com/releases/2012/07/120718101419.htm (accessed October 23, 2014).

Share This



More Computers & Math News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Google's Inbox Is The Latest Gmail Competitor

Google's Inbox Is The Latest Gmail Competitor

Newsy (Oct. 22, 2014) — Google's new e-mail app is meant for greater personalization and allows users to better categorize their mail, but Gmail isn't going away just yet. Video provided by Newsy
Powered by NewsLook.com
Free Math App Is A Teacher's Worst Nightmare

Free Math App Is A Teacher's Worst Nightmare

Newsy (Oct. 22, 2014) — New photo-recognition software from MicroBlink, called PhotoMath, solves linear equations and simple math problems with step-by-step results. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins