Featured Research

from universities, journals, and other organizations

New agents join the fight against antibiotic-resistant bacteria

Date:
July 19, 2012
Source:
Technical University of Denmark (DTU)
Summary:
The World Health Organization (WHO) has named antimicrobial resistance one of the most important threats to human health. Scientists have now demonstrated that a new class of chemically produced antimicrobial agents could become a future infection treatment alternative. These findings are another advance for researchers in the fight against antibiotic-resistant bacteria.

The World Health Organization (WHO) has named antimicrobial resistance one of the most important threats to human health. We therefore need to find new compounds that can be used as future alternatives to conventional antibiotics.

With her PhD project, Line Hein-Kristensen from the National Food Institute, Technical University of Denmark has, in collaboration with the Faculty of Health and Medical Sciences, University of Copenhagen, and DTU Systems Biology, demonstrated that a new class of chemically produced antimicrobial agents could become a future infection treatment alternative. These findings are another advance for researchers in the fight against antibiotic-resistant bacteria.

Antimicrobial peptides providing the platform Line Hein-Kristensen worked with a new class of antimicrobial agents, the so-called antimicrobial peptides. Antimicrobial peptides are part of the immune system in all life forms, including humans, and constitute the first line of defence against pathogenic organisms entering the body, e.g. via the food that we eat.

Antimicrobial peptides are special in that they act differently to conventional antibiotics and may thus be active against the very bacteria that are resistant to conventional antibiotics. These also include multiresistant bacteria -- for example MRSA and ESBL against which we now have only a limited arsenal of treatment options.

Synthetic compound emulating nature Novel chemical methods have now made it possible to emulate the structure of natural antimicrobial peptides and thus also to develop many novel synthetic variants. Line Hein-Kristensen's PhD project focuses specifically on a series of synthetic compounds that have been designed, synthetised and characterised the Faculty of Health and Medical Sciences, University of Copenhagen.

The findings of her research show that the degree of antimicrobial activity against a range of food-borne and nosocomial (hospital-acquired) pathogenic bacteria depends on the chemical structure of custom-designed compounds. The research also shows that the synthetic antimicrobial peptides kill the bacteria by disrupting the bacterial cell membrane

With long-term exposure, resistance to the synthetic antimicrobial peptides may develop, but there are no current signs of cross-resistance, i.e. resistance to several different compounds with different chemical structures. This means that if bacteria become resistant to some of these compounds, other antimicrobial peptides could potentially be used for treating bacterial infections.

"If we are able to optimise the chemical structure of the synthetic compounds, we can limit the development of resistant bacteria," says Line Hein-Kristensen from the National Food Institute about the findings presented in her PhD thesis.

"We hope that one day antimicrobial peptides can become a viable alternative to conventional antibiotics," Line Hein-Kristensen adds.

Background info

Antimicrobial resistance When bacteria are exposed to antibiotics, they protect themselves by developing resistance in order to survive. The resistant bacteria have changed their hereditary material -- their genes.

ESBL Due to the use of broad-spectrum antibiotics, in particular cephalosporins, the bacteria become resistant to this type of antimicrobial agent. What is special about cephalosporin-resistance is that the bacteria also become resistant to almost all types of penicillin.

The enzymes responsible for cephalosporin resistance are called ESBL (Extended-Spectrum Beta-Lactamases or cephalosporinases). Cefalosporin-resistant bacteria, such as E. coli, Salmonella and Klebsiella are thus called ESBL-producing bacteria or simply ESBL bacteria

Researches find the same types of ESBL genes in both humans and meat.

MRSA MRSA is short for Methicillin-resistant Staphylococcus Aureus.

Staphylococci are bacteria found in humans, animals and in our surrounding environment. Staphylococcus aureus is part of the normal nasal and skin flora in approx. 50% of the population. Staphylococcus aureus can cause a wide range of infections, from superficial wounds and abscesses to serious infections such as Osteitis and Endocarditis. In hospitals, staphylococcus aureus is the most frequent cause of post-surgery infections.

The gene which primarily causes the resistance is called mecA. This makes the bacteria resistant to all so-called beta-lactam antibiotics, including penicillins and the broad-spectrum antimicrobial agents cephalosporines.

Researches are finding the same types of MRSA genes in both humans and a number of animals, including pigs and cows.

More information on Hein-Kristensen's PhD thesis: Spectrum and activity of novel antimicrobial peptidomimetics (PDF).


Story Source:

The above story is based on materials provided by Technical University of Denmark (DTU). Note: Materials may be edited for content and length.


Cite This Page:

Technical University of Denmark (DTU). "New agents join the fight against antibiotic-resistant bacteria." ScienceDaily. ScienceDaily, 19 July 2012. <www.sciencedaily.com/releases/2012/07/120719103545.htm>.
Technical University of Denmark (DTU). (2012, July 19). New agents join the fight against antibiotic-resistant bacteria. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2012/07/120719103545.htm
Technical University of Denmark (DTU). "New agents join the fight against antibiotic-resistant bacteria." ScienceDaily. www.sciencedaily.com/releases/2012/07/120719103545.htm (accessed April 20, 2014).

Share This



More Plants & Animals News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins