Featured Research

from universities, journals, and other organizations

Microwave heating improves artificial bone

Date:
July 23, 2012
Source:
National Institute for Materials Science
Summary:
An artificial bone scaffold could enhance the treatment of bone damage and defects through bone grafts.

An artificial bone scaffold produced by researchers in South Korea could enhance the treatment of bone damage and defects through bone grafts.

Traditionally, bone grafts require material to be transplanted from either another bone of the patient or from a donor. Artificial grafts offer an easier and less risky process, providing an artificial scaffold on which bone cells can grow. However, developing a material with ideal characteristics has proved difficult. The structure of natural bone provides an optimal compromise between weight and strength, and the natural scaffold is porous to allow ingrowth of bone cells. An ideal artificial substitute would recreate all of these aspects.

A research team led by Professor Lee Byong Taek at Soonchunhyang University have created an artificial scaffold that closely imitates the structure of small bones such as those in fingers and toes. Writing in the current issue of Science and Technology of Advanced Materials, they describe how the scaffold also allows efficient growth of bone cells on its surface, thereby meeting the criteria of both strength and biocompatibility needed to be used in patients.

To achieve this, the researchers harnessed the advantages of two different materials. Both were ceramics already used in artificial bone, each with different benefits. The first was hydroxyapatite, a material based on calcium phosphate and which is a major constituent of natural bone. While hydroxyapatite encourages bone cell ingrowth, when it is porous like natural bone, it is mechanically weak. The second material, zirconium dioxide, is stronger but cells do not grow on it. The new scaffold has a layered structure: hydroxyapatite on the outer surfaces to encourage cell growth, and zirconium dioxide beneath to provide strength.

Previous attempts at similar composite structures have suffered because the traditional production process for ceramics requires heating to extremely high temperatures, and unequal expansion of the different materials can cause cracking. Using microwaves for heating allowed the researchers to produce a more stable scaffold, and a gradient layer between the hydroxyapatite and zirconium dioxide, which had intermediate properties, alleviated the effects of differing expansion.

To assess the interaction of the final scaffold with cells, the team first incubated cells in the presence of the ceramics and tested for genetic markers of growth. They found no difference when compared to cells grown in control conditions, meaning the ceramics did not prevent growth of cells.

To test how the cells grow on the scaffold itself, the team incubated cultured bone cells on its surface for different lengths of time. Cells attached to the surface within 30 minutes and over a number of days, they continued to grow and divide. After a week, cells covered the surface of the scaffold and almost filled the pores in the ceramic structure.

This compatibility with cell growth means that, along with the strength provided by the composite structure, the new artificial bone meets the requirements for an artificial graft more fully than current options.


Story Source:

The above story is based on materials provided by National Institute for Materials Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Dong-Woo Jang, Thi-Hiep Nguyen, Swapan Kumar Sarkar, Byong-Taek Lee. Microwave sintering andin vitrostudy of defect-free stable porous multilayered HAp–ZrO2artificial bone scaffold. Science and Technology of Advanced Materials, 2012; 13 (3): 035009 DOI: 10.1088/1468-6996/13/3/035009

Cite This Page:

National Institute for Materials Science. "Microwave heating improves artificial bone." ScienceDaily. ScienceDaily, 23 July 2012. <www.sciencedaily.com/releases/2012/07/120723150029.htm>.
National Institute for Materials Science. (2012, July 23). Microwave heating improves artificial bone. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2012/07/120723150029.htm
National Institute for Materials Science. "Microwave heating improves artificial bone." ScienceDaily. www.sciencedaily.com/releases/2012/07/120723150029.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins