Featured Research

from universities, journals, and other organizations

Martian polygons and deep-sea polygons on Earth: More evidence for ancient Martian oceans?

Date:
July 27, 2012
Source:
Geological Society of America
Summary:
Debate over the origin of large-scale polygons (hundreds of meters to kilometers in diameter) on Mars remains active even after several decades of detailed observations. Similarity in geometric patterns on Mars and Earth has long captured the imagination. Geologists have examined these large-scale polygons and compared them to similar features on Earth's seafloor, which they believe may have formed via similar processes.

(A) Profile using THEMIS and MOLA imagery showing topographic differences between areas of large-scale Martian peripheral and basinal polygons in Acidalia Planitia. This profile was used to calculate maximum (2.7%) and average (0.8%) slope values. (B) Map showing basinal and peripheral polygons in Acidalia Planitia.
Credit: Image courtesy of Geological Society of America

Debate over the origin of large-scale polygons (hundreds of meters to kilometers in diameter) on Mars remains active even after several decades of detailed observations. Similarity in geometric patterns on Mars and Earth has long captured the imagination. In this new article from GSA Today, geologists at The University of Texas at Austin examine these large-scale polygons and compare them to similar features on Earth's seafloor, which they believe may have formed via similar processes.

Related Articles


Understanding these processes may in turn fuel support for the idea of ancient oceans on Mars.

Through examination of THEMIS, MOLA, Viking, and Mariner data and images, planetary scientists have found that areas on the northern plains of Mars are divided into large polygon-shaped portions and that sets of these polygons span extensive areas of the Martian surface. Smaller polygon-shaped bodies are found elsewhere on Mars, but these are best explained by thermal contraction processes similar to those in terrestrial permafrost environments and not likely to form larger polygons.

In the August 2012 issue of GSA Today, Lorena Moscardelli and her colleagues from The University of Texas at Austin present a detailed comparison of the geometric features of these large Martian polygons and similar features found in deep-sea sediments here on Earth. Moscardelli and colleagues note striking similarities.

On Earth, polygon-shaped areas, with the edges formed by faults, are common in fine-grained deep-sea sediments. Some of the best examples of these polygon-fault areas are found in the North Sea and the Norwegian Sea. These are imaged using detailed, 3-D seismic surveys conducted to search for offshore oil and gas deposits. Images reproduced in this paper show that these deep-water polygons are also 1,000 meters or greater in diameter.

While the details of deep-sea polygon formation on Earth are complex, Moscardelli and her colleagues conclude that the majority of these polygons form in a common environment: sediments made up of fine-grained clays in ocean basins that are deeper than 500 meters, and when these sediments are only shallowly buried by younger sediments. A key observation -- also made recently by Michelle Cooke at the University of Massachusetts -- is that the physical mechanism of polygon formation requires a thick, wet, and mechanically weak layer of sediment.

Moscardelli and colleagues also conclude that the slope angle of the sea floor plays an important role in both the formation and preservation of these polygons. Where the seafloor slope is very gentle (slopes less than half a degree), the polygons have very regular shapes and sizes. In many locations where polygons have formed on top of buried topographic features on the seafloor, the shapes of the polygons were altered, and in some cases were broken up and disrupted where the slopes were steepest. Both observations are consistent with deformation of the soft marine sediments as they creep or flow downslope in these areas.

In the northern plains of Mars, where the surface is basically flat, the polygons have very regular shapes and sizes -- remarkably similar to the deep-sea polygons found on Earth. In places where the topography on Mars is more varied, and where there may be evidence for other sediment-transport features on the surface, areas of deformed and disrupted polygons can be found -- again similar to the disrupted polygons here on Earth.

On the basis of these striking similarities, the University of Texas at Austin team concludes that these features most likely share a common origin and were formed by similar mechanisms in a similar environment. The team argues that the Martian polygons were formed within a thick, wet, and weak layer of fine-grained sediments that were deposited in a deep-water setting, similar to the Earth polygons. Thus, these interesting geometric features may provide additional evidence for the existence of an ocean in the northern portion of Mars approximately three billion years ago.


Story Source:

The above story is based on materials provided by Geological Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lorena Moscardelli, Tim Dooley, Dallas Dunlap, Martin Jackson, Lesli Wood. Deep-water polygonal fault systems as terrestrial analogs for large-scale Martian polygonal terrains. GSA Today, 2012; 22 (8): 4 DOI: 10.1130/GSATG147A.1

Cite This Page:

Geological Society of America. "Martian polygons and deep-sea polygons on Earth: More evidence for ancient Martian oceans?." ScienceDaily. ScienceDaily, 27 July 2012. <www.sciencedaily.com/releases/2012/07/120727171922.htm>.
Geological Society of America. (2012, July 27). Martian polygons and deep-sea polygons on Earth: More evidence for ancient Martian oceans?. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2012/07/120727171922.htm
Geological Society of America. "Martian polygons and deep-sea polygons on Earth: More evidence for ancient Martian oceans?." ScienceDaily. www.sciencedaily.com/releases/2012/07/120727171922.htm (accessed October 30, 2014).

Share This



More Space & Time News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Antares Liftoff Explosion

Raw: Antares Liftoff Explosion

AP (Oct. 29, 2014) Observers near Wallops Island recorded what they thought would be a routine rocket launch Tuesday night. What they recorded was a major rocket explosion shortly after lift off. (Oct 29) Video provided by AP
Powered by NewsLook.com
Raw: Russian Cargo Ship Docks at Space Station

Raw: Russian Cargo Ship Docks at Space Station

AP (Oct. 29, 2014) Just hours after an American cargo run to the International Space Station ended in flames, a Russian supply ship has arrived at the station with a load of fresh supplies. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Journalist Captures Moment of Antares Rocket Explosion

Journalist Captures Moment of Antares Rocket Explosion

Reuters - US Online Video (Oct. 29, 2014) A space education journalist is among those who witness and record the explosion of an unmanned Antares rocket seconds after its launch. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Rocket Explosion Under Investigation

Rocket Explosion Under Investigation

AP (Oct. 28, 2014) NASA and Orbital Sciences officials say they are investigating the explosion of an unmanned commercial supply rocket bound for the International Space Station. It blew up moments after liftoff Tuesday evening over the launch site in Virginia. (Oct. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins