Featured Research

from universities, journals, and other organizations

New chemical sensor makes finding landmines and buried IEDs easier

Date:
August 2, 2012
Source:
University of Connecticut
Summary:
A new chemical sensing system is believed to be the first of its kind capable of detecting vapors from buried landmines and other explosive devices with the naked eye rather than advanced scientific instrumentation.

University of Connecticut scientists have developed a novel buried explosive detection system using a nanofiberous film and ultraviolet light. This image shows detection of particulate explosives on a contaminated hand using the novel electrospun pyrene film.
Credit: Image courtesy of Ying Wang/UConn and Advanced Functional Materials, Wiley-VCH Verlag GmbH & Co. KGaA

A chemical sensing system developed by engineers at the University of Connecticut is believed to be the first of its kind capable of detecting vapors from buried landmines and other explosive devices with the naked eye rather than advanced scientific instrumentation.

Related Articles


The research was first reported in the May 11, 2012 online edition of Advanced Functional Materials.

The key to the system is a fluorescent nanofiberous film that can detect ultra-trace levels of explosive vapors and buried explosives when applied to an area where explosives are suspected. A chemical reaction marking the location of the explosive device occurs when the film is exposed to handheld ultraviolet light.

The system can detect nitroaromatics such as those found in TNT and 2,4-DNT (the military's primary explosive and the principle components in landmines) as well as the elements used in harder to detect plastic explosives such as HMX, RDX, Tetryl, and PETN. The ultra-sensitive system can detect elements at levels as low as 10 parts per billion (TNT), 74 parts per trillion (Tetryl), 5 ppt (RDX), 7 ppt (PETN) and 0.1 ppt (HMX) released from one billionth of a gram of explosive residue.

If there is no explosive vapor present, the recyclable film retains a bright fluorescent cyan blue color when exposed to ultraviolet light. If explosive molecules are present, the fluorescence is quenched and a dark circle identifying the threat forms on the film within minutes.

"Our initial results have been very promising," says UConn Dr. Ying Wang, who developed the system as a chemical engineering doctoral student working under the supervision of UConn Associate Engineering Professor Yu Lei. "We are now in the process of arranging a large-scale field test in Sweden."

Rather than using sophisticated chemical modifications or costly synthetic polymers in preparing the sensing material, UConn scientists prepared their ultra-thin film by simply electrospinning pyrene with polystyrene in the presence of an organic salt (tetrabutylammonium hexafluorophosphate or TBAH). This resulted in a highly porous nanofiberous membrane that absorbs explosive vapors at ultra-trace levels quickly and reliably. The film also has excellent sensitivity against common interferences such as ammonium nitrate and inorganic nitrates. Initial vapor detection took place within seconds with more than 90 percent fluorescent quenching efficiency within six minutes.

According to the United Nations, there are an estimated 110 million active landmines hidden underground in 64 countries around the world. It is estimated that as many as 25,000 people are maimed or killed by landmines each year across the globe. The mines not only threaten people's lives, they can paralyze communities by limiting the use of land for farming or roads for trade.

Clearing mines is a slow and deliberative process often involving specially-trained dogs and metal detectors, but each method has its shortcomings. Dogs, considered the gold standard in detection, eventually tire and can experience difficulty differentiating in dense minefields. Metal detectors are prone to false positive readings that can be triggered by buried pieces of metal unrelated to a mine or unexploded ordinance.

While explosive material can be concealed within landmines and IEDs, the seal is often not airtight and small amounts of vapors escape allowing for detection.

The film developed by Wang and Lei is very light weight, similar to paper, and can be rolled out over a suspect area like a sheet. The electrospinning process makes it both easy and affordable to produce.

"We would be very interested in following up on any kind of research that looks at chemical detection systems," says Erik Tollefsen, advisor for stockpile destruction, EOD and technology for the Geneva International Centre for Humanitarian Demining (GICHD). "This is something we might use as a quality control tool for animal detection. There are some cost benefits here."

"The general observation is that chemical detection systems work on a nano-level and our animal-based systems are on the pico-level, which is 1,000 times more sensitive," Tollefsen says. "But obviously with animals, you can't switch them on and off like a machine and they are sometimes difficult to work with."

Wang and Lei have also developed a novel chemical test for detecting TNT in water and other liquids. The application could be used to detect potential terrorist threats in airports as well as groundwater contamination in areas where explosives were used in construction.

The ultra-sensitive, real-time sensor can detect TNT concentrations ranging from about 33 parts per trillion (the equivalent of one drop in 20 Olympic-sized swimming pools) to 225 parts per million.

"Our new sensor based on a recently developed fluorescent polymer for explosives in aqueous samples has two sensing mechanisms in one sensing material, which is very unique," says Lei. "The sensor can easily be incorporated into a paper test strip similar to those used for pregnancy tests, which means it can be produced and used at a very low cost."

Wang and Lei have applied for patents for both chemical sensing systems.


Story Source:

The above story is based on materials provided by University of Connecticut. Note: Materials may be edited for content and length.


Cite This Page:

University of Connecticut. "New chemical sensor makes finding landmines and buried IEDs easier." ScienceDaily. ScienceDaily, 2 August 2012. <www.sciencedaily.com/releases/2012/08/120802073230.htm>.
University of Connecticut. (2012, August 2). New chemical sensor makes finding landmines and buried IEDs easier. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/08/120802073230.htm
University of Connecticut. "New chemical sensor makes finding landmines and buried IEDs easier." ScienceDaily. www.sciencedaily.com/releases/2012/08/120802073230.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins