Featured Research

from universities, journals, and other organizations

Link between cell division and growth rate: Puzzling question of how cells know when to progress through the cell cycle answered

Date:
August 5, 2012
Source:
Massachusetts Institute of Technology
Summary:
It's a longstanding question in biology: How do cells know when to progress through the cell cycle? Researchers have now precisely measured the growth rates of single cells, allowing them to answer that fundamental question. They report that mammalian cells divide not when they reach a critical size, but when their growth rate hits a specific threshold.

It's a longstanding question in biology: How do cells know when to progress through the cell cycle?

In simple organisms such as yeast, cells divide once they reach a specific size. However, determining if this holds true for mammalian cells has been difficult, in part because there has been no good way to measure mammalian cell growth over time.

Now, a team of MIT and Harvard Medical School (HMS) researchers has precisely measured the growth rates of single cells, allowing them to answer that fundamental question. In the Aug. 5 online edition of Nature Methods, the researchers report that mammalian cells divide not when they reach a critical size, but when their growth rate hits a specific threshold.

This first-ever observation of this threshold was made possible by a technique developed by MIT professor Scott Manalis and his students in 2007 to measure the mass of single cells. In the new study, Manalis and his colleagues were able to track cell growth and relate it to the timing of cell division by measuring cells' mass every 60 seconds throughout their lifespans.

The finding offers a possible explanation for how cells determine when to start dividing, says Sungmin Son, a grad student in Manalis' lab and lead author of the paper. "It's easier for cells to measure their growth rate, because they can do that by measuring how fast something in the cell is produced or degraded, whereas measuring size precisely is hard for cells," Son says.

Manalis, a professor of biological engineering and member of the David H. Koch Institute for Integrative Cancer Research at MIT, is senior author of the paper. Other authors are former MIT grad student Yaochung Weng; Amit Tzur, a former research fellow at HMS; Paul Jorgensen, a former HMS postdoc; Jisoo Kim, a former undergraduate student at MIT; and Marc Kirschner, a professor of systems biology at HMS.

Tracking cells over time

Manalis' original cell-weighing system, known as a suspended microchannel resonator, pumps cells (in fluid) through a microchannel that runs across a tiny silicon cantilever. That cantilever vibrates within a vacuum. When a cell flows through the channel, the frequency of the cantilever's vibration changes, and the cell's buoyant mass can be calculated from that change in frequency.

For the new study, the researchers redesigned their system so that they could trap cells over a much longer period of time. The original system offered limited control over the motion of cells in the channel; cells could be lost or become unviable due to accrued shear stress from frequent passages through the microchannel. Consequently, growth could be monitored for less than 30 minutes.

To avoid this problem, the researchers developed a way to precisely control the flow in the system so that a cell could be stopped anywhere in the bypass channel. They also configured the flow to constantly replenish nutrients and remove waste. Now a cell passes through only every 60 seconds and remains viable for several generations.

The new system also measures fluorescent signals from a cell in addition to its mass. Cells are programmed to express fluorescent proteins at various points in the cell cycle, allowing the researchers to link cell cycle information to growth.

A cell devotes itself to growth in a phase called G1. A critical transition occurs when the cell enters the S phase, during which DNA is replicated in preparation for division. The researchers found that growth rate increases rapidly during the G1 phase. This rate varies a great deal from cell to cell during G1, but converges as cells approach the S phase. Once cells complete the transition into S phase, growth rates diverge again.

Building on the feature of the new system that precisely controls the environmental conditions inside the channel, researchers can also change the conditions very rapidly, allowing them to monitor how cells respond to such disturbances.

"We are now measuring the cell's response on short timescales to various perturbations, such as depleting a particular nutrient or adding a drug," Manalis says. "We believe this could offer new types of information that could not be obtained from conventional proliferation assays."


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sungmin Son, Amit Tzur, Yaochung Weng, Paul Jorgensen, Jisoo Kim, Marc W Kirschner, Scott R Manalis. Direct observation of mammalian cell growth and size regulation. Nature Methods, 2012; DOI: 10.1038/nmeth.2133

Cite This Page:

Massachusetts Institute of Technology. "Link between cell division and growth rate: Puzzling question of how cells know when to progress through the cell cycle answered." ScienceDaily. ScienceDaily, 5 August 2012. <www.sciencedaily.com/releases/2012/08/120805144837.htm>.
Massachusetts Institute of Technology. (2012, August 5). Link between cell division and growth rate: Puzzling question of how cells know when to progress through the cell cycle answered. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2012/08/120805144837.htm
Massachusetts Institute of Technology. "Link between cell division and growth rate: Puzzling question of how cells know when to progress through the cell cycle answered." ScienceDaily. www.sciencedaily.com/releases/2012/08/120805144837.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins