Featured Research

from universities, journals, and other organizations

New metamaterials device focuses sound waves like a camera lens

Date:
August 7, 2012
Source:
Penn State Materials Research Institute
Summary:
Researchers have designed and computationally tested a type of humanmade metamaterial capable for the first time of manipulating a variety of acoustic waves with one simple device.

The acoustic beam aperture modifier can effectively shrink or expand the aperture of an acoustic beam with minimum energy loss and waveform distortion. With such an acoustic lens, the need for a series of expensive transducers of different sizes is eliminated.
Credit: Sz-Chin Steven Lin, Penn State

In a cover article in The Journal of Applied Physics, a team of Penn State researchers has designed and computationally tested a type of humanmade metamaterial capable for the first time of manipulating a variety of acoustic waves with one simple device. This invention will benefit almost all current sonic and ultrasonic applications, such as ultrasonic nondestructive evaluations and ultrasonic imaging. The device should also provide more accurate and efficient high-intensity focused ultrasound(HIFU) therapies, a non-invasive heat-based technique targeted at a variety of cancers and neurological disorders.

Optical metamaterials have been widely studied in the past decade for applications such as cloaking and perfect lenses. The basic principles of optical metamaterials apply to acoustic metamaterials. Artificial structures are created in patterns that bend the acoustic wave onto a single point, and then refocus the acoustic wave into a wider or narrower beam, depending on the direction of travel through the proposed acoustic beam aperture modifier. The acoustic beam aperture modifier is built upon gradient-index phononic crystals, in this case an array of steel pins embedded in epoxy in a particular pattern. The obstacles (steel pins) slow down the acoustic wave speed in order to bend the acoustic waves into curved rays.

According to post-doctoral scholar and the paper's lead author, Sz-Chin Steven Lin, while other types of acoustic metamaterials also could focus and defocus an acoustic beam to achieve beam aperture modification (although prior to this work no such beam modifier has been proposed), their device possesses the advantage of small size and high energy conservation. Currently, researchers and surgeons need to have many transducers of different sizes to produce acoustic waves with different apertures. This is analogous to having to swap out lenses on a camera to change the lens's aperture. With this invention, by changing the modifier attached to the transducer the desired aperture can be easily attained.

"Design of acoustic beam aperture modifier using gradient-index phononic crystals," by Lin, Bernhard Tittmann, and Tony Jun Huang, is the first design concept for an acoustic beam aperture modifier to appear in the scientific literature, and no acoustic beam modifier device is available in the market. As a result, the authors expect their device could have wide applications across several important acoustic fields, from medical ultrasound to higher sensitivity surface acoustic wave sensors to higher Q factor resonators. The team is currently making a prototype based on this design.

Support for their research came from the National Science Foundation, the National Institutes of Health (NIH) Director's New Innovator Award, and the Penn State Center for Nanoscale Science (MRSEC).


Story Source:

The above story is based on materials provided by Penn State Materials Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sz-Chin Steven Lin, Bernhard R. Tittmann, Tony Jun Huang. Design of acoustic beam aperture modifier using gradient-index phononic crystals. Journal of Applied Physics, 2012; 111 (12): 123510 DOI: 10.1063/1.4729803

Cite This Page:

Penn State Materials Research Institute. "New metamaterials device focuses sound waves like a camera lens." ScienceDaily. ScienceDaily, 7 August 2012. <www.sciencedaily.com/releases/2012/08/120807095742.htm>.
Penn State Materials Research Institute. (2012, August 7). New metamaterials device focuses sound waves like a camera lens. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2012/08/120807095742.htm
Penn State Materials Research Institute. "New metamaterials device focuses sound waves like a camera lens." ScienceDaily. www.sciencedaily.com/releases/2012/08/120807095742.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins