Featured Research

from universities, journals, and other organizations

New drug target for schizophrenia identified

Date:
August 13, 2012
Source:
Mount Sinai Medical Center
Summary:
Finding provides new drug development opportunity in this hard-to-treat disease.

Researchers at Mount Sinai School of Medicine may have discovered why certain drugs to treat schizophrenia are ineffective in some patients. Published online in Nature Neuroscience, the research will pave the way for a new class of drugs to help treat this devastating mental illness, which impacts one percent of the world's population, 30 percent of whom do not respond to currently available treatments.

Related Articles


A team of researchers at Mount Sinai School of Medicine set out to discover what epigenetic factors, or external factors that influence gene expression, are involved in this treatment-resistance to atypical antipsychotic drugs, the standard of care for schizophrenia. They discovered that, over time, an enzyme in the brains of schizophrenic patients analyzed at autopsy begins to compensate for the prolonged chemical changes caused by antipsychotics, resulting in reduced efficacy of the drugs.

"These results are groundbreaking because they show that drug resistance may be caused by the very medications prescribed to treat schizophrenia, when administered chronically," said Javier Gonzalez-Maeso, PhD, Assistant Professor of Psychiatry and Neurology at Mount Sinai School of Medicine and lead investigator on the study.

They found that an enzyme called HDAC2 was highly expressed in the brain of mice chronically treated with antipsychotic drugs, resulting in lower expression of the receptor called mGlu2, and a recurrence of psychotic symptoms. A similar finding was observed in the postmortem brains of schizophrenic patients. The research team administered a chemical called suberoylanilide hydroxamic acid (SAHA), which inhibits the entire family of HDACs. They found that this treatment prevented the detrimental effect of the antipsychotic called clozapine on mGlu2 expression, and also improved the therapeutic effects of atypical antipsychotics in mouse models.

Previous research conducted by the team showed that chronic treatment with the antipsychotic clozapine causes repression of mGlu2 expression in the frontal cortex of mice, a brain area key to cognition and perception. The researchers hypothesized that this effect of clozapine on mGlu2 may play a crucial role in restraining the therapeutic effects of antipsychotic drugs.

"We had previously found that chronic antipsychotic drug administration causes biochemical changes in the brain that may limit the therapeutic effects of these drugs,"said Dr. Gonzalez-Maeso. "We wanted to identify the molecular mechanism responsible for this biochemical change, and explore it as a new target for new drugs that enhance the therapeutic efficacy of antipsychotic drugs."

Mitsumasa Kurita, PhD, a postdoctoral fellow at Mount Sinai and the lead author of the study, said, "We found that atypical antipsychotic drugs trigger an increase of HDAC2 in frontal cortex of individuals with schizophrenia, which then reduces the presence of mGlu2, and thereby limits the efficacy of these drugs," said

Dr. Gonzalez-Maeso's team is now developing compounds that specifically inhibit HDAC2 as adjunctive treatments to antipsychotics. The study was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by Mount Sinai Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mitsumasa Kurita, Terrell Holloway, Aintzane Garcνa-Bea, Alexey Kozlenkov, Allyson K Friedman, Josι L Moreno, Mitra Heshmati, Sam A Golden, Pamela J Kennedy, Nagahide Takahashi, David M Dietz, Giuseppe Mocci, Ane M Gabilondo, James Hanks, Adrienne Umali, Luis F Callado, Amelia L Gallitano, Rachael L Neve, Li Shen, Joseph D Buxbaum, Ming-Hu Han, Eric J Nestler, J Javier Meana, Scott J Russo, Javier Gonzαlez-Maeso. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nature Neuroscience, 2012; DOI: 10.1038/nn.3181

Cite This Page:

Mount Sinai Medical Center. "New drug target for schizophrenia identified." ScienceDaily. ScienceDaily, 13 August 2012. <www.sciencedaily.com/releases/2012/08/120813103250.htm>.
Mount Sinai Medical Center. (2012, August 13). New drug target for schizophrenia identified. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2012/08/120813103250.htm
Mount Sinai Medical Center. "New drug target for schizophrenia identified." ScienceDaily. www.sciencedaily.com/releases/2012/08/120813103250.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

How Technology Is Ruining Snow Days For Students

How Technology Is Ruining Snow Days For Students

Newsy (Jan. 25, 2015) — More schools are using online classes to keep from losing time to snow days, but it only works if students have Internet access at home. Video provided by Newsy
Powered by NewsLook.com
Weird Things Couples Do When They Lose Their Phone

Weird Things Couples Do When They Lose Their Phone

BuzzFeed (Jan. 24, 2015) — Did you back it up? Do you even know how to do that? Video provided by BuzzFeed
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Amazing Technology Allows Blind Mother to See Her Newborn Son

Amazing Technology Allows Blind Mother to See Her Newborn Son

RightThisMinute (Jan. 23, 2015) — Not only is Kathy seeing her newborn son for the first time, but this is actually the first time she has ever seen a baby. Kathy and her sister, Yvonne, have been legally blind since childhood, but thanks to an amazing new technology, eSight glasses, which gives those who are legally blind the ability to see, she got the chance to see the birth of her son. It&apos;s an incredible moment and an even better story. Video provided by RightThisMinute
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins