Featured Research

from universities, journals, and other organizations

The ins and outs of building the sperm tail

Date:
August 13, 2012
Source:
Instituto Gulbenkian de Ciência (IGC)
Summary:
Sperm swim, lung cells sweep mucus away, and the cells in the female Fallopian tube move eggs from the ovary to the uterus. Underlying these phenomena are flagella – slender, hair-like structures extending from the surface of the cells, that bend, beat or wave rhythmically. Biologists have now dissected how sperm cells of the fruit fly build their flagella. These findings pave the way to further understand the molecules and processes that may trigger a variety of human diseases and disorders, including infertility, respiratory problems and hydrocephaly, known to be associated with defects in flagellar movements.

Drosophila melanogaster (fruit fly) sperm, showing the growing flagella (in green). The structure at the base of flagella is shown in red, and blue marks the DNA of each sperm cell.
Credit: Zita Carvalho-Santos, IGC

Sperm swim, lung cells sweep mucus away, and the cells in the female Fallopian tube move eggs from the ovary to the uterus. Underlying these phenomena are flagella -- slender, hair-like structures extending from the surface of the cells, that bend, beat or wave rhythmically. In the latest issue of the journal Developmental Cell, scientists from the Instituto Gulbenkian de Ciência (IGC), in Portugal, have dissected how sperm cells of the fruit fly build their flagella. These findings pave the way to further understand the molecules and processes that may trigger a variety of human diseases and disorders, including infertility, respiratory problems and hydrocephaly, known to be associated with defects in flagellar movements.

Related Articles


Using electron microscopy -- which allows scientists to see structures that are 3,500 times thinner than a strand of human hair -- Monica Bettencourt-Dias and her team described, for the first time ever, the different steps involved in making a motile flagellum in sperm cells of the fruit fly (Drosophila melanogaster). The team was particularly interested in when and how a critical protein structure -- called the central microtubule pair -- is formed. Without the central microtubule pair complex, the flagellum is unable to move in a coordinated fashion.

Zita Carvalho-Santos, a post-doctoral researcher, explains what they found, "We looked at a particular fly gene, called Bld10, and found that flies in which this gene is inactive produce sperm with incomplete flagella because, it seems, the Bld10 protein is essential for the central microtubule pair to form. As a result, mutant sperm are immobile, and male flies are infertile. Humans have an analogous gene that produces a similar protein, which has been linked to male infertility."

The researchers built on work carried out in the 1970s that described the process of spermatogenesis in the fruit fly, to produce the most detailed description of flagellar biogenesis in an animal cell to date.

Monica Bettencourt-Dias adds, "We found that the process is much more dynamic than we had anticipated: first a single microtubule chain forms, and then the second. Our work has provided several long-awaited answers, but also raised other questions, that studying sperm formation in Drosophila may answer."

This study was carried out in collaboration with researchers at the Instituto de Tecnologia Química e Biológica (ITQB, Portugal). Zita Carvalho-Santos and Pedro Machado (IGC) contributed equally to the work. This research was funded by the Fundação para a Ciência e Tecnologia (FCT, Portugal) and the European Molecular Biology Organization (EMBO). Research leading to the results was funded by a European Research Council (ERC) grant.


Story Source:

The above story is based on materials provided by Instituto Gulbenkian de Ciência (IGC). Note: Materials may be edited for content and length.


Journal Reference:

  1. Zita Carvalho-Santos, Pedro Machado, Inês Alvarez-Martins, Susana M. Gouveia, Swadhin C. Jana, Paulo Duarte, Tiago Amado, Pedro Branco, Micael C. Freitas, Sara T.N. Silva, Claude Antony, Tiago M. Bandeiras, and Mónica Bettencourt-Dias. BLD10/CEP135 Is a Microtubule-Associated Protein that Controls the Formation of the Flagellum Central Microtubule Pair.. Developmental Cell, 23: 1-13 (August 14)

Cite This Page:

Instituto Gulbenkian de Ciência (IGC). "The ins and outs of building the sperm tail." ScienceDaily. ScienceDaily, 13 August 2012. <www.sciencedaily.com/releases/2012/08/120813130504.htm>.
Instituto Gulbenkian de Ciência (IGC). (2012, August 13). The ins and outs of building the sperm tail. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2012/08/120813130504.htm
Instituto Gulbenkian de Ciência (IGC). "The ins and outs of building the sperm tail." ScienceDaily. www.sciencedaily.com/releases/2012/08/120813130504.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins