Featured Research

from universities, journals, and other organizations

New method may allow personalized clinical trial for cancer therapies

Date:
August 13, 2012
Source:
Vanderbilt University Medical Center
Summary:
Researchers have developed a new tool to observe cell behavior, which has revealed surprising clues about how cancer cells respond to therapy. The new tool may offer ways to improve personalized cancer therapy by predicting tumor response and testing combinations of targeted therapies in an individual patient's tumor.

A new tool to observe cell behavior has revealed surprising clues about how cancer cells respond to therapy -- and may offer a way to further refine personalized cancer treatments.

The approach, developed by investigators at Vanderbilt-Ingram Cancer Center, shows that erlotinib -- a targeted therapy that acts on a growth factor receptor mutated in some lung, brain and other cancers -- doesn't simply kill tumor cells as was previously assumed. The drug also causes some tumor cells to go into a non-dividing (quiescent) state or to slow down their rate of division. This variability in cell response to the drug may be involved in cancer recurrence and drug resistance, the authors suggest.

The new tool, reported Aug. 12 in Nature Methods, may offer ways to improve personalized cancer therapy by predicting tumor response and testing combinations of targeted therapies in an individual patient's tumor.

In the personalized approach to cancer treatment, a patient's tumor is analyzed for a set of mutations to which there are matching drugs that act on those mutations.

This approach has worked rather well for many cancers that carry specific mutations, said senior author Vito Quaranta, M.D., professor of Cancer Biology.

"The genetics is well understood, the clinical effect is understood and the chemistry behind the therapy is understood. But there is a missing piece," said Quaranta. "Believe it or not, what is actually not understood is how cells respond to these drugs, what is actually happening."

The prevailing view has been that targeted therapies kill all the cells harboring a particular mutation.

But even if the tumor is composed entirely of genetically identical cells -- which is unlikely -- a drug will not affect all cells the same way, Quaranta explained.

"Some of these cells may die, some may just stop dividing and sit there (called quiescence), and some may keep dividing, but more slowly."

However, no current tests can provide an accurate, detailed picture of cell behavior needed to understand tumor response to drugs.

So, the investigators, led by first author Darren Tyson, Ph.D., research assistant professor of Cancer Biology, combined powerful automated, time-lapse microscopy with analytical tools and software they developed.

Using these techniques, they could capture the behavior of lung cancer cells every six to 10 minutes for up to 10 days.

As they expected, the targeted therapy erlotinib killed some cells, while others became quiescent. They observed that the drug even affected genetically identical cells (cells that arose from the same parental cell) differently.

"These cells are clearly genetically identical, as identical as they can possibly be because one cell just divided into two, but you get completely different responses: one dies and the other one doesn't," said Tyson. "This suggests that there are other things besides genetics that have to be taken into account."

What those other factors are remains unclear, but the investigators are conducting follow- up experiments to determine what might underlie this differential response.

"And presumably, it is those (quiescent) cells that ultimately result in tumor recurrence," said Tyson.

Quaranta and colleagues hope to take the technology into small clinical trials to test whether it can predict a patient's response to therapy.

"We think that we might be able to forecast what the response is going to be," Quaranta said. "We can take samples from the tumor, subject them to this assay, and since we're looking at response over time, we will have a rate of response."

This could tell oncologists how long a patient's tumor will respond to a given therapy before it recurs. Such information could also help determine which patients will require more aggressive treatment -- and Quaranta believes the assay will be able to test combinations of drugs on a patient's tumor cells to find the right combination to induce a response.

"We're hoping that this assay -- or some implementation of this assay -- will eventually work like a personalized clinical trial," Quaranta said.

Graduate student Peter Frick and data analyst Shawn Garbett were co-authors on the paper. The research was supported by a grant from the National Institutes of Health/ National Cancer Institute Integrative Cancer Biology Program (CA113007).


Story Source:

The above story is based on materials provided by Vanderbilt University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Darren R Tyson, Shawn P Garbett, Peter L Frick, Vito Quaranta. Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data. Nature Methods, 2012; DOI: 10.1038/nmeth.2138

Cite This Page:

Vanderbilt University Medical Center. "New method may allow personalized clinical trial for cancer therapies." ScienceDaily. ScienceDaily, 13 August 2012. <www.sciencedaily.com/releases/2012/08/120813155527.htm>.
Vanderbilt University Medical Center. (2012, August 13). New method may allow personalized clinical trial for cancer therapies. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2012/08/120813155527.htm
Vanderbilt University Medical Center. "New method may allow personalized clinical trial for cancer therapies." ScienceDaily. www.sciencedaily.com/releases/2012/08/120813155527.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Liberia Pleads for Help to Fight Ebola

Liberia Pleads for Help to Fight Ebola

AP (Sep. 22, 2014) Liberia's finance minister is urging the international community to quickly follow through on pledges of cash to battle Ebola. Bodies are piling up in the capital Monrovia as the nation awaits more help. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Ebola Doctor Says Border Controls Critical

Ebola Doctor Says Border Controls Critical

AP (Sep. 22, 2014) A Florida doctor who helped fight the expanding Ebola outbreak in West Africa says the disease can be stopped, but only if nations quickly step up their response and make border control a priority. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Global Ebola Aid Increasing But Critics Say It's Late

Global Ebola Aid Increasing But Critics Say It's Late

Newsy (Sep. 21, 2014) More than 100 tons of medical supplies were sent to West Africa on Saturday, but aid workers say the global response is still sluggish. Video provided by Newsy
Powered by NewsLook.com
Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins