Featured Research

from universities, journals, and other organizations

Military aircraft will soon be quieter

Date:
August 14, 2012
Source:
University of Cincinnati
Summary:
Innovations on reducing the noise of the United State's most sophisticated military aircraft have been developed.

They're sleek. They're fast. They're powerful. And, they are deafening. Furthermore, those Top Gun military jets need to be up in the air in the wee hours -- over land -- to simulate their landings on aircraft carriers. But innovations out of the University of Cincinnati's Gas Dynamics and Propulsion Laboratory are showing promise in reducing the intense noise of these supersonic jets without impacting their power. It's research that can help neighborhoods slumber a little more soundly, keep their windows rattling a little less loudly and also protect the hearing of military personnel.

Related Articles


Research by Jeff Kastner, a research professor in the UC College of Engineering and Applied Science (CEAS), will be presented Aug. 21 at INTER-NOISE 2012, the 41st International Congress and Exposition on Noise Control Engineering, in New York City. Kastner will present on UC discoveries that use chevrons and fluidic injection to reduce supersonic jet noise.

Kastner's research, supported by funding from the Office of Naval Research, is examining chevron technology developed at UC that has, in part, been commonly used in the commercial aviation industry to reduce noise on jet engines.

Chevrons -- serrations on the exhaust side of a jet engine -- are becoming more popular in commercial aircraft. They control the turbulence and resulting noise coming from the high-speed flow as it exhausts from the jet engine.

Kastner says the velocities of exotic military planes are much higher than commercial aircraft, which is the main reason they're so much louder. Since chevrons can result in some fuel loss when controlling turbulence, Kastner's research is testing fluidic technology to enhance the performance of chevrons for high-power military jets. He explains that since the planes only need the noise reduction during takeoff, his lab is exploring a chevron/fluidic injection system that can be turned on during takeoff and turned off when the plane is in the air, eliminating fuel loss.

"We are in the business of trying to quiet planes without impacting their fuel efficiency," says Kastner.

Kastner says he and fellow researchers in UC's Gas Dynamics and Propulsion Laboratory are testing multiple concepts that manipulate the turbulence in the jet exhaust to examine how those changes impact the sound field. That's because noise is a byproduct of the turbulence, and so manipulating the turbulence can make it less efficient at producing noise.

The short-term goal of the UC research is to reduce noise by 3 decibels while ultimately reducing noise 10 decibels or more.


Story Source:

The above story is based on materials provided by University of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "Military aircraft will soon be quieter." ScienceDaily. ScienceDaily, 14 August 2012. <www.sciencedaily.com/releases/2012/08/120814100204.htm>.
University of Cincinnati. (2012, August 14). Military aircraft will soon be quieter. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2012/08/120814100204.htm
University of Cincinnati. "Military aircraft will soon be quieter." ScienceDaily. www.sciencedaily.com/releases/2012/08/120814100204.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Will New A350 Help Airbus Fly?

Will New A350 Help Airbus Fly?

Reuters - Business Video Online (Dec. 22, 2014) Qatar Airways takes first delivery of Airbus' new A350 passenger jet. As Joel Flynn reports it's the planemaker's response to the Boeing 787 Dreamliner and the culmination of eight years of development. Video provided by Reuters
Powered by NewsLook.com
Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Man Parachutes Off Lawn Chair Airlifted By Helium Balloons

Buzz60 (Dec. 22, 2014) A BASE jumper rides a lawn chair, a shotgun, and a giant bunch of helium balloons into the sky in what seems like a country version of the movie 'Up." Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins