Featured Research

from universities, journals, and other organizations

Quark matter’s connection with the Higgs: Heavy ion collisions delve deeper into the origin of (visible) mass

Date:
August 14, 2012
Source:
Brookhaven National Laboratory
Summary:
You may think you've heard everything you need to know about the origin of mass. After all, scientists colliding protons at the Large Hadron Collider (LHC) in Europe recently presented stunning evidence strongly suggesting the existence of a long-sought particle called the Higgs boson, thought to "impart mass to matter." But while the Higgs particle may be responsible for the mass of fundamental particles such as quarks, quarks alone can't account for the mass of most of the visible matter in the universe -- that's everything we see and sense around us.

The three valence quarks that make up each proton account for about one percent of its mass; the rest comes from interactions among the quarks and gluons.
Credit: Image courtesy of Brookhaven National Laboratory

You may think you've heard everything you need to know about the origin of mass. After all, scientists colliding protons at the Large Hadron Collider (LHC) in Europe recently presented stunning evidence strongly suggesting the existence of a long-sought particle called the Higgs boson, thought to "impart mass to matter." But while the Higgs particle may be responsible for the mass of fundamental particles such as quarks, quarks alone can't account for the mass of most of the visible matter in the universe -- that's everything we see and sense around us.

Related Articles


To get a grasp on what holds these visible forms of matter together -- everything from stars to planets to people -- you have to understand how quarks and gluons interact. That's the essence of quark matter physics -- and the Quark Matter 2012 international conference, taking place in Washington, D.C., August 12-18.

"We're studying the 99 percent of the mass of the visible universe that isn't explained by the Higgs," says Peter Steinberg, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory and a keen participant in the Quark Matter conference.

Visible matter, he explains, is everything made of atoms, which get their mass mainly from the protons and neutrons that make up atomic nuclei. The electrons orbiting around the nucleus contribute practically nothing. But the protons and neutrons, each made of three quarks, are much more massive than the sum of their constituent particles. Where does all the "extra" mass come from?

The answer, physicists believe, lies in how the quarks interact via the exchange of gluons, massless particles that hold the quarks together via nature's strongest force, and interactions among the gluons themselves. To tease apart the features of this force, which gets stronger and stronger if you try to pull the subatomic quarks apart, physicists accelerate atomic nuclei (a.k.a. heavy ions) to near light speed, where the gluons become dominant, and then steer them into head-on collisions at particle accelerators like the Relativistic Heavy Ion Collider (RHIC) at Brookhaven and the Large Hadron Collider in Europe. These collisions recreate conditions that last existed early in the universe, before quarks joined up to form protons and neutrons. Studying the behavior of "free" quarks and gluons in this primordial quark-gluon plasma should help scientists better understand the strong force, and how it generates so much of the mass we see when the particles coalesce to form ordinary matter.

So, while visible matter accounts for a mere fraction of the total universe -- just five percent, the rest being composed of dark matter and mysterious dark energy -- it's enough to keep physicists like Steinberg busy for a while!


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Quark matter’s connection with the Higgs: Heavy ion collisions delve deeper into the origin of (visible) mass." ScienceDaily. ScienceDaily, 14 August 2012. <www.sciencedaily.com/releases/2012/08/120814121444.htm>.
Brookhaven National Laboratory. (2012, August 14). Quark matter’s connection with the Higgs: Heavy ion collisions delve deeper into the origin of (visible) mass. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2012/08/120814121444.htm
Brookhaven National Laboratory. "Quark matter’s connection with the Higgs: Heavy ion collisions delve deeper into the origin of (visible) mass." ScienceDaily. www.sciencedaily.com/releases/2012/08/120814121444.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Google Announces Improvements To Balloon-Borne Wi-Fi Project

Google Announces Improvements To Balloon-Borne Wi-Fi Project

Newsy (Nov. 21, 2014) In a blog post, Google said its balloons have traveled 3 million kilometers since the start of Project Loon. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
British 'Bio-Bus' Is Powered By Human Waste

British 'Bio-Bus' Is Powered By Human Waste

Buzz60 (Nov. 21, 2014) British company GENeco debuted what its calling the Bio-Bus, a bus fueled entirely by biomethane gas produced from food scraps and sewage. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins