Featured Research

from universities, journals, and other organizations

Noise down, neuron signals up

Date:
August 15, 2012
Source:
Springer Science+Business Media
Summary:
A new model of background noise present in the nervous system could help better understand neuronal signalling delay in response to a stimulus.

A new model of background noise present in the nervous system could help better understand neuronal signalling delay in response to a stimulus.

Biomedical engineer Muhammet Uzuntarla from Bulent Ecevit University, Turkey, and his colleagues present a biologically accurate model of the underlying noise which is present in the nervous system. The article is about to be published in EPJ Bı. This work has implications for explaining how noise, modulated by unreliable synaptic transmission, induces a delay in the response of neurons to external stimuli as part of the neurons coding mechanism.

Neurons communicate by means of electrical pulses, called spikes, exchanged via synapses. The time it takes for brain cells to first respond to an external stimulus with an electric signal -commonly referred to as fist-spike latency-is of particular interest for scientists. It is thought to carry much more neural information than subsequent serial spike signals.

The authors analysed the presence of noise in the nervous system detected through changes in first-spike latency. The noise is due to the synaptic bombardment of each neuron by a large number of incoming excitatory and inhibitory spike inputs. Previous attempts at noise modeling used a generic bell-shaped signal, referred to as a Gaussian approximation. Now, Uzuntarla and his colleagues have devised a noise model that is closer to the biological reality.

They showed there is a relation between the noise and delays in spike signal transmission. The latter is caused by unreliable synapses that do not always transmit the signal, because their chemical-based signalling does not always work. Yet, the authors also demonstrated that synaptic unreliability can be controlled.

To do so, they identified two factors that could be tuned influencing the noise, namely the incoming excitatory and inhibitory input signalling regime and the coupling strength between inhibitory and excitatory synapses. Ultimately, the authors concluded, modulating these factors could help neurons encode information more accurately.


Story Source:

The above story is based on materials provided by Springer Science+Business Media. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Uzuntarla, M. Ozer, D. Q. Guo. Controlling the first-spike latency response of a single neuron via unreliable synaptic transmission. The European Physical Journal B, 2012; 85 (8) DOI: 10.1140/epjb/e2012-30282-0

Cite This Page:

Springer Science+Business Media. "Noise down, neuron signals up." ScienceDaily. ScienceDaily, 15 August 2012. <www.sciencedaily.com/releases/2012/08/120815093117.htm>.
Springer Science+Business Media. (2012, August 15). Noise down, neuron signals up. ScienceDaily. Retrieved April 16, 2014 from www.sciencedaily.com/releases/2012/08/120815093117.htm
Springer Science+Business Media. "Noise down, neuron signals up." ScienceDaily. www.sciencedaily.com/releases/2012/08/120815093117.htm (accessed April 16, 2014).

Share This



More Health & Medicine News

Wednesday, April 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Ebola Outbreak Now Linked To 121 Deaths

Ebola Outbreak Now Linked To 121 Deaths

Newsy (Apr. 15, 2014) — The ebola virus outbreak in West Africa is now linked to 121 deaths. Health officials fear the virus will continue to spread in urban areas. Video provided by Newsy
Powered by NewsLook.com
Cognitive Function: Is It All Downhill From Age 24?

Cognitive Function: Is It All Downhill From Age 24?

Newsy (Apr. 15, 2014) — A new study out of Canada says cognitive motor performance begins deteriorating around age 24. Video provided by Newsy
Powered by NewsLook.com
How Mt. Everest Helped Scientists Research Diabetes

How Mt. Everest Helped Scientists Research Diabetes

Newsy (Apr. 15, 2014) — British researchers were able to use Mount Everest's low altitudes to study insulin resistance. They hope to find ways to treat diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins