Featured Research

from universities, journals, and other organizations

Neural interface for hand prosthesis can restore function in brain areas responsible for motor control

Date:
August 20, 2012
Source:
IOS Press BV
Summary:
Amputation disrupts not only the peripheral nervous system but also central structures of the brain. While the brain is able to adapt and compensate for injury in certain conditions, in amputees the traumatic event prevents adaptive cortical changes. A group of scientists reports adaptive plastic changes in an amputee's brain following implantation of multielectrode arrays inside peripheral nerves.

Amputation disrupts not only the peripheral nervous system but also central structures of the brain. While the brain is able to adapt and compensate for injury in certain conditions, in amputees the traumatic event prevents adaptive cortical changes. A group of scientists reports adaptive plastic changes in an amputee's brain following implantation of multielectrode arrays inside peripheral nerves.
Credit: James Steidl / Fotolia

Amputation disrupts not only the peripheral nervous system but also central structures of the brain. While the brain is able to adapt and compensate for injury in certain conditions, in amputees the traumatic event prevents adaptive cortical changes. A group of scientists reports adaptive plastic changes in an amputee's brain following implantation of multielectrode arrays inside peripheral nerves.

Their results are available in the current issue of Restorative Neurology and Neuroscience.

"We found that a neurally-interfaced hand prosthesis re-established communication between the central and peripheral nervous systems, not only restructuring the areas directly responsible for motor control but also their functional balance within the bi-hemispheric system necessary for motor control," says lead investigator Camillo Porcaro, PhD, of the Institute of Neuroscience, Newcastle University, Medical School, Newcastle upon Tyne, UK and the Institute of Cognitive Sciences and Technologies (ISTC) -- National Research Council (CNR).

A 26-year old male with a left arm amputation was implanted with four microelectrode arrays in the ulnar and median nerves of his stump for four weeks. Prior to implantation, he was trained for two weeks by video to perform three specific movements with his phantom hand. During the experimental period, he underwent intensive training to control a hand prosthesis using the implanted microelectrodes to perform the same hand grip tasks. Together with visual feedback from the prosthesis, the patient received sensory feedback from an experimenter, who delivered electrical pulses to the nerves activated by each movement. EEG signals were recorded as the patient moved his right hand and the prosthesis.

The patient's right hand movement showed clear activation of the primary sensory and motor areas for right hand movement, on the left side of the brain. Prior to implantation, commands to move the phantom left hand triggered the primary sensory and motor areas on the left side of the brain, and the pre-motor and supplementary motor cortices on both sides of the brain. No primary motor cortex movement was found on the right side of the brain, as would be expected.

After the four weeks of prosthesis motor control training with implanted microelectrodes, cerebral activation changed markedly. Cortical recruitment became almost symmetrical with right hand movements. The presence of intra-fascicular electrodes allowed new signals to be delivered through peripheral nerves towards the cortex and produced an intensive exchange of sensori-motor afferent and efferent inputs and outputs. Four weeks of training led to a new functional recruitment of sensorimotor areas devoted to hand control.

"Taken together, the results of this study confirm that neural interfaces are optimal candidates for hand prosthesis control," says Dr. Porcaro. "They establish communication channels needed for natural control of the prosthesis. Furthermore, neural interfaces recreate the connection with the environment that promotes restorative neuroplasticity. Bi-hemispheric networks regain the physiological communication necessary for motor control."


Story Source:

The above story is based on materials provided by IOS Press BV. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. DiPino, C. Porcaro, M. Tombini, G. Assenza, G. Pellegrino, F. Tecchio, P.M. Rossini. A neurally -interfaced hand prosthesis tuned inter-hemispheric communication. Restorative Neurology and Neuroscience, September 2012 DOI: 10.3233/RNN-2012-120224

Cite This Page:

IOS Press BV. "Neural interface for hand prosthesis can restore function in brain areas responsible for motor control." ScienceDaily. ScienceDaily, 20 August 2012. <www.sciencedaily.com/releases/2012/08/120820114058.htm>.
IOS Press BV. (2012, August 20). Neural interface for hand prosthesis can restore function in brain areas responsible for motor control. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2012/08/120820114058.htm
IOS Press BV. "Neural interface for hand prosthesis can restore function in brain areas responsible for motor control." ScienceDaily. www.sciencedaily.com/releases/2012/08/120820114058.htm (accessed July 28, 2014).

Share This




More Mind & Brain News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com
University Quiz Implies Atheists Are Smarter Than Christians

University Quiz Implies Atheists Are Smarter Than Christians

Newsy (July 25, 2014) An online quiz from a required course at Ohio State is making waves for suggesting atheists are inherently smarter than Christians. Video provided by Newsy
Powered by NewsLook.com
Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

Beatings and Addiction: Pakistan Drug 'clinic' Tortures Patients

AFP (July 24, 2014) A so-called drugs rehab 'clinic' is closed down in Pakistan after police find scores of ‘patients’ chained up alleging serial abuse. Duration 03:05 Video provided by AFP
Powered by NewsLook.com
New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins