Featured Research

from universities, journals, and other organizations

Big picture of the universe confirmed, WiggleZ survey of more than 200,000 galaxies shows

Date:
August 21, 2012
Source:
International Centre for Radio Astronomy Research (ICRAR)
Summary:
We know that stars group together to form galaxies, galaxies clump to make clusters and clusters gather to create structures known as superclusters. At what scale though, if at all, does this Russian doll-like structure stop? Scientists have been debating this very question for decades because clustering on large scales would be in conflict with our 'standard model' of cosmology. The current model is based on Einstein's equations assuming everything is smooth on the largest scales. If matter were instead clumpy on very large scales, then the entire model would need to be rethought.

This image is a slice from a large simulation called 'GiggleZ' which complements the WiggleZ survey. It shows a snapshot of the large-scale matter distribution as studied in Morag Scrimgeour's research.
Credit: Greg Poole, Centre for Astrophysics and Supercomputing, Swinburne University.

We know that stars group together to form galaxies, galaxies clump to make clusters and clusters gather to create structures known as superclusters. At what scale though, if at all, does this Russian doll-like structure stop? Scientists have been debating this very question for decades because clustering on large scales would be in conflict with our 'standard model' of cosmology. The current model is based on Einstein's equations assuming everything is smooth on the largest scales. If matter were instead clumpy on very large scales, then the entire model would need to be rethought.

Cosmologists agree that on 'small' scales (tens of millions of light years), matter in the Universe is highly clustered. So the 'standard model' can only hold true if the Universe transitions to an even distribution of matter (homogeneity) on larger scales, irrespective of the viewing direction. However, some scientists have recently argued that the entire Universe never becomes homogenous, and that it is clustered on all scales, much like one of Mandelbrot's famous 'fractals' (a snowflake is a good example of a fractal). If the Universe has properties similar to a fractal, our description of space and time is wrong, and our understanding of things like Dark Energy is deeply flawed.

New data from a recently completed galaxy survey was published last night by a PhD student from the International Centre for Radio Astronomy Research (ICRAR) and The University of Western Australia in Perth and her colleagues. This paper might finally put an end to this long running debate.

Using the Anglo-Australian Telescope, Ms Morag Scrimgeour has found that on distance scales larger than 350 million light years, matter is distributed extremely evenly, with little sign of fractal-like patterns.

"We used a survey called WiggleZ which contains more than 200,000 galaxies, and probes a cosmic volume of about 3 billion light years, cubed," Ms Scrimgeour explains "This makes it the largest survey ever used for this type of measurement of the large scale Universe."

This finding is extremely significant for cosmologists as it confirms that the tools being used to describe the Universe are the right tools for the job after all. Had evidence been found confirming large-scale fractals, it would have left cosmologists without a working model for the Universe, sending them back to the drawing board to painstakingly adjust theories.

"Our entire understanding of the Universe, even how we interpret the light we see from stars and galaxies, would be affected if the Universe were not even on large scales. By looking at how the WiggleZ galaxies are distributed in space on scales up to 930 million light years, we find that they are very close to homogeneous, meaning there is no large-scale clustering. So we can say with a high degree of certainty that our picture of the large-scale Universe is correct," said Ms Scrimgeour.


Story Source:

The above story is based on materials provided by International Centre for Radio Astronomy Research (ICRAR). Note: Materials may be edited for content and length.


Journal Reference:

  1. Morag I. Scrimgeour, Tamara Davis, Chris Blake, J. Berian James, Gregory B. Poole, Lister Staveley-Smith, Sarah Brough, Matthew Colless, Carlos Contreras, Warrick Couch, Scott Croom, Darren Croton, Michael J. Drinkwater, Karl Forster, David Gilbank, Mike Gladders, Karl Glazebrook, Ben Jelliffe, Russell J. Jurek, I-hui Li, Barry Madore, D. Christopher Martin, Kevin Pimbblet, Michael Pracy, Rob Sharp, Emily Wisnioski, David Woods, Ted K. Wyder, H. K. C. Yee. The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity. Monthly Notices of the Royal Astronomical Society, 2012; 425 (1): 116 DOI: 10.1111/j.1365-2966.2012.21402.x

Cite This Page:

International Centre for Radio Astronomy Research (ICRAR). "Big picture of the universe confirmed, WiggleZ survey of more than 200,000 galaxies shows." ScienceDaily. ScienceDaily, 21 August 2012. <www.sciencedaily.com/releases/2012/08/120821094032.htm>.
International Centre for Radio Astronomy Research (ICRAR). (2012, August 21). Big picture of the universe confirmed, WiggleZ survey of more than 200,000 galaxies shows. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2012/08/120821094032.htm
International Centre for Radio Astronomy Research (ICRAR). "Big picture of the universe confirmed, WiggleZ survey of more than 200,000 galaxies shows." ScienceDaily. www.sciencedaily.com/releases/2012/08/120821094032.htm (accessed October 1, 2014).

Share This



More Space & Time News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

French Apple Fans Discover the Apple Watch

French Apple Fans Discover the Apple Watch

AFP (Sep. 30, 2014) — Apple fans in France discover the latest toy, the Apple Watch. The watch comes in two sizes and an array of interchangeable, fashionable wrist straps. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
Water Discovery On Small Planet Could Be Key To Earth 2.0

Water Discovery On Small Planet Could Be Key To Earth 2.0

Newsy (Sep. 25, 2014) — Scientists have discovered traces of water in the atmosphere of a distant, Neptune-sized planet. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins