Featured Research

from universities, journals, and other organizations

Smooth sailing: Space launch system giving Marshall, Langley wind tunnels a workout

Date:
August 23, 2012
Source:
NASA
Summary:
Since well before the inception of NASA, engineers used wind tunnels and scale models to test how vehicles would respond and interact with the atmosphere. At the Marshall Space Flight Center in Huntsville, Ala., and Langley Research Center in Hampton, Va., engineers are using wind tunnel testing to enhance the development of NASA's Space Launch System, a heavy-lift launch vehicle that will propel science and human exploration into deep space and launch NASA's Orion spacecraft to expand human presence beyond low Earth orbit.

The 70-metric-ton configuration of the SLS rocket, designed to carry the Orion spacecraft, is tested in Marshall's Trisonic Wind Tunnel. This view uses special cameras and a deflection of light directed through the windows in the tunnel to show the shadows of airflow as it changes angles at high speeds, helping visualize the various intense pressures of atmosphere on the model.
Credit: NASA/MSFC

Launching rockets is no easy or inexpensive task. Developers must consider the ground support infrastructure, fuel elements and flight hardware itself; not to mention the safety of everyone involved.

Related Articles


Since well before the inception of NASA, engineers used wind tunnels and scale models to test how vehicles would respond and interact with the atmosphere. At the Marshall Space Flight Center in Huntsville, Ala., and Langley Research Center in Hampton, Va., engineers are using wind tunnel testing to enhance the development of NASA's Space Launch System, a heavy-lift launch vehicle that will propel science and human exploration into deep space and launch NASA's Orion spacecraft to expand human presence beyond low Earth orbit.

Engineers at Marshall's Trisonic Wind Tunnel have spent the past four months putting early SLS scale models through more than 900 tests of various crew and cargo configurations.

"We need to evaluate all the possible conditions that the launch vehicle may encounter as it traverses the atmosphere," said John Blevins, SLS lead engineer for aerodynamics and acoustics. "We look at many different configurations and designs of the same rocket, discovering how it reacts under variations in flight conditions. It is a very busy and exciting time for us."

The Trisonic Wind Tunnel is testing the flight stability of SLS, providing the initial configuration testing and the basis to assess flight stability. Testing on a larger geometric scale at Langley's Unitary Plan Wind Tunnel and tests planned for Boeing's Polysonic Wind Tunnel in St. Louis will improve understanding of the vehicle's aerodynamics as the design matures. The Langley facility can accurately test limits of rocket designs, but only at speeds above Mach 1.5. The Boeing facility will be used for the lower Mach conditions on the larger model. At Marshall, tests are conducted to determine how the designs respond to roll, pitch and yaw at speeds from Mach 0.3 to Mach 5. The data from both tunnels will be merged to evaluate the design's performance, guidance and control.

"Once we analyze the data, we can determine the best configuration and refine our design of the vehicle," said SLS Chief Engineer Garry Lyles. "Any changes can be made safely, easily and inexpensively before the full-scale version is built. This helps ensure that SLS is an affordable and sustainable capability for human space exploration beyond low Earth orbit."

On a larger scale, engineers use wind tunnels to evaluate unsteady aerodynamic effects that can cause vehicle vibrations and resonance. The biggest SLS wind tunnel model test to date is scheduled for mid-September. Langley's Transonic Dynamics Tunnel will test the first large scale integrated model -- a 12-foot-long version of the heavy-lift rocket to evaluate these unsteady aerodynamic phenomena.

Each test moves the agency closer to giving the nation a launch capability to take humans farther than ever before. Designed to be flexible for launching spacecraft for crew and cargo missions, including NASA's Orion multipurpose vehicle, SLS will enable NASA to meet the president's goal of sending humans to an asteroid by 2025 and to Mars in the 2030s.

For more information about the Space Launch System, including the newest proposed rocket configurations, visit: http://www.nasa.gov/sls


Story Source:

The above story is based on materials provided by NASA. The original article was written by Bill Hubscher, NASA's Marshall Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA. "Smooth sailing: Space launch system giving Marshall, Langley wind tunnels a workout." ScienceDaily. ScienceDaily, 23 August 2012. <www.sciencedaily.com/releases/2012/08/120823151754.htm>.
NASA. (2012, August 23). Smooth sailing: Space launch system giving Marshall, Langley wind tunnels a workout. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2012/08/120823151754.htm
NASA. "Smooth sailing: Space launch system giving Marshall, Langley wind tunnels a workout." ScienceDaily. www.sciencedaily.com/releases/2012/08/120823151754.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins