Featured Research

from universities, journals, and other organizations

Capturing movements of actors and athletes in real time with conventional video cameras

Date:
August 28, 2012
Source:
University Saarland
Summary:
Within milliseconds, and just with the help of mathematics, computing power and conventional  video cameras, computer scientists can automatically capture the movements of several people. The new approach helps not only animation specialists in Hollywood movies but also medical scientists and athletes.

Computer scientists at the Max-Planck-Institute for Informatics in Saarbrücken can compute the skeleton motion of the actor in realtime.
Credit: MPI

Within milliseconds, and just with the help of mathematics, computing power and conventional video cameras, computer scientists at the Max-Planck-Institute for Informatics in Saarbrücken can automatically capture the movements of several people. The new approach helps not only animation specialists in Hollywood movies but also medical scientists and athletes.

Related Articles


In the computer graphics (CG) animated comedy "Ted," which is running now in the cinemas, Ted is a teddy bear who came to life as the result of a childhood wish of John Bennett (Mark Wahlberg) and has refused to leave his side ever since. CG Animated characters like "Ted" have become a standard of Hollywood's movie productions since the blockbuster "Avatar" with its blue-skinned computer-animated characters won three Oscars and brought in three billion US dollars, digital animated characters have become a standard of Hollywood's movie productions.

While movies like "Pirates of the Caribbean" or "Ted" still combined real actors with digital counterparts, the well-known director Steven Spielberg focused entirely on virtual actors in "The Adventures of Tintin." He used the so-called motion capture approach, which also animated Ted. Motion capture means that an actor wears a suit with special markers attached. These reflect infrared light sent and received by a camera system installed in a studio. In this way, the system captures the movements of the actor. Specialists use this as input to transfer exactly the same movements to the virtual character.

"The real actors dislike wearing these suits, as they constrain their movements," explains Christian Theobalt, professor of computer science at Saarland University and head of the research group "Graphics, Vision & Video" at the Max-Planck-Institute for Informatics (MPI). Theobalt points out that this has not changed since animating "Gollum" in the trilogy "Lord of the Rings." Hence, together with his MPI-colleagues Nils Hasler, Carsten Stoll and Jürgen Gall of the Swiss Federal Institute of Technology Zurich, Theobalt developed a new approach that both works without markers and captures motions in realtime. "The part which is scientifically new is the way in which we represent and compute the filmed scene. It enables new speed in capturing and visualizing the movements with normal video cameras," Theobalt explains.

Implemented, it looks like this: The video cameras record a researcher turning cartwheels. The computer gets the camera footage as input and computes the skeleton motion of the actor so quickly that you cannot perceive any delay between the movement and its overlay, a red skeleton. According to Theobalt, the new computing approach also works if the movements of several persons have to be captured, or if they are obscured by objects in the studio and against a noisy background.

"Therefore we are convinced that our approach even enables motion capture outdoors, for example in the Olympic stadium," Theobalt points out. Athletes could use it to run faster, to jump higher or to throw the spear farther. Spectators in the stadium or in front of the TV could use the technology to tell the difference between first and second place. Besides entertainment, medical science could also benefit from the new approach, for example by helping doctors to check healing after operations on joints.

In the next months his MPI colleagues Nils Hasler and Carsten Stoll will found a company to transform the software prototype into a real product. "They've already had some meetings with representatives sent by companies in Hollywood," Theobalt says.

Technical background

The new approach requires technology which is quite cheap. You need no special cameras, but their recording has to be synchronized. According to the MPI researcher, five cameras are enough that the approach works. But they used twelve cameras for the published results. The way they present the scene to the computer and let it compute makes the difference. Hence, they built a three-dimensional model of the actor whose motions should be captured. The result is a motion skeleton with 58 joints. They model the proportions of the body as so-called sums of three dimensional Gaussians, whose visualisation looks like a ball. The radius of the ball varies according to the dimensions of the real person. The resulting three-dimensional model resembles the mascot of a famous tire manufacturer.

The images of the video cameras are presented as two-dimensional Gaussians that cover image blobs that are consistent in color. To capture the person's movement, the software continuously computes the best way that the 2D and 3D Gaussians can overlay each other while fitting accurately. The Saarbrücken computer scientists are able to compute these model-to-image similarities in a very efficient way. Therefore, they can capture the filmed motion and visualize it in real-time. All they need is just a few cameras, some computing power and mathematics.


Story Source:

The above story is based on materials provided by University Saarland. Note: Materials may be edited for content and length.


Cite This Page:

University Saarland. "Capturing movements of actors and athletes in real time with conventional video cameras." ScienceDaily. ScienceDaily, 28 August 2012. <www.sciencedaily.com/releases/2012/08/120828093139.htm>.
University Saarland. (2012, August 28). Capturing movements of actors and athletes in real time with conventional video cameras. ScienceDaily. Retrieved March 6, 2015 from www.sciencedaily.com/releases/2012/08/120828093139.htm
University Saarland. "Capturing movements of actors and athletes in real time with conventional video cameras." ScienceDaily. www.sciencedaily.com/releases/2012/08/120828093139.htm (accessed March 6, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Friday, March 6, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Star Wars Inspires Mobile Holograms

Star Wars Inspires Mobile Holograms

Reuters - Business Video Online (Mar. 6, 2015) — 3D holograms could soon be coming to your mobile phone. Inspired by the famous Princess Leia hologram from Star Wars, a U.S. company is showcasing a prototype display at the Mobile World Congress at Barcelona and says it could be used for real-time video calls. Ivor Bennett reports Video provided by Reuters
Powered by NewsLook.com
Game Makers Lured Into Virtual Worlds

Game Makers Lured Into Virtual Worlds

AFP (Mar. 6, 2015) — Some 25,000 people have descended upon San Francisco to show off the latest technologies and video games at the Game Developers Conference. Developers here discuss the future of the industry. Duration: 02:20. Video provided by AFP
Powered by NewsLook.com
Star Wars-Inspired Prototype Creates Holographic Display

Star Wars-Inspired Prototype Creates Holographic Display

Reuters - Innovations Video Online (Mar. 5, 2015) — A prototype holographic display named Leia - after the Star Wars princess who appeared in holographic form asking Obi-Wan Kenobu for help - is demonstrated at the Mobile World Congress in Barcelona. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
IKEA and Samsung Launch Embedded Wireless Charging Range

IKEA and Samsung Launch Embedded Wireless Charging Range

Reuters - Innovations Video Online (Mar. 5, 2015) — Samsung and IKEA hope their new embedded wireless charging products, launched at Barcelona&apos;s Mobile World Congress, will tempt consumers eager for plugless power. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins