Featured Research

from universities, journals, and other organizations

Turning chemistry inside-out: Self-assembling smart microscopic reagents to pioneer pourable electronics

Date:
August 29, 2012
Source:
Ruhr-Universitaet-Bochum
Summary:
A new project plans to build autonomous self-assembling electronic microreagents that are almost as small as cells. They will exchange chemical and electronic information to jointly direct complex chemical reactions and analyses in the solutions they are poured into. This is a form of embedded computation -- "to compute is to construct" -- in which, for example, the output is a particular catalyst or coating needed in the (input) local chemical environment.

MICREAgent lablets equipped with autonomous electronics will self-assemble to form microscopic chemical reactors as pairs (gemlabs) or exchange information and chemicals on a docking surface.
Credit: © John McCaskill

First place in an EU competitive call on "Unconventional Computing" was awarded to a collaborative proposal coordinated by Prof. John McCaskill from the RUB Faculty of Chemistry and Biochemistry. The project MICREAgents plans to build autonomous self-assembling electronic microreagents that are almost as small as cells. They will exchange chemical and electronic information to jointly direct complex chemical reactions and analyses in the solutions they are poured into. This is a form of embedded computation -- "to compute is to construct" -- in which, for example, the output is a particular catalyst or coating needed in the (input) local chemical environment.

The EU supports the project within the FP7 programme with 3.4 million Euros for three years. Four research groups at RUB will join forces with top teams across Europe, from Israel and New Zealand.

Self-assembling electronic agents

In order to create this programmable microscale electronic chemistry, MICREAgents (Microscopic Chemically Reactive Electronic Agents) will contain electronic circuits on 3D microchips, called lablets. The lablets have a diameter of less than 100 ΅m and self-assemble in pairs or like dominos to enclose transient reaction compartments. They can selectively concentrate, process, and release chemicals into the surrounding solution, under local electronic control, in a similar way to which the genetic information in cells controls local chemical processes. The reversible pairwise association allows the lablets to transfer information from one to another.

Translating electronic signals into chemical processes

The lablet devices will integrate transistors, supercapacitors, energy transducers, sensors and actuators, and will translate electronic signals into constructive chemical processing as well as record the results of this processing. Instead of making chemical reactors to contain chemicals, the smart MICREAgents will be poured into chemical mixtures, to organize the chemistry from within. Ultimately, such microreactors, like cells in the bloodstream, will open up the possibility of controlling complex chemistry from the inside out.

Computation intertwined with construction

The self-assembling smart micro reactors can be programmed for molecular amplification and other chemical processing pathways that start from complex mixtures, concentrate and purify chemicals, perform reactions in programmed cascades, sense reaction completion, and transport and release products to defined locations. MICREAgents represent a novel form of computation intertwined with construction. By embracing self-assembly and evolution, they are a step towards a robust and evolvable realization of John von Neumann's universal construction machine vision. Although these nanoscale structures will soon be sufficiently complex to allow self-replication of their chemical and electronic information, they will not present a proliferative threat to the environment, because they depend for their function on the electronic circuit layer that is fabricated as part of their substrate.

RUB collaborators

For the project, Prof. Dr. John S. McCaskill (Microsystems Chemistry and Biological Information Technology) collaborates with Prof. Dr. Gόnter von Kiedrowski (Bioorganic Chemistry), Prof. Dr. Jόrgen Oehm (Analog Integrated Circuits) and Dr. Pierre Mayr (Integrated Digital Circuits). McCaskill's and von Kiedrowski's labs at RUB have already joined forces in previous European Projects forging a path towards artificial cells. The ECCell project, for example, that finished in February this year, has laid the foundation for an electronic chemical cell. There, the electronics and microfluidics were exterior to the chemistry: in MICREAgents this is being turned inside out.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Cite This Page:

Ruhr-Universitaet-Bochum. "Turning chemistry inside-out: Self-assembling smart microscopic reagents to pioneer pourable electronics." ScienceDaily. ScienceDaily, 29 August 2012. <www.sciencedaily.com/releases/2012/08/120829064703.htm>.
Ruhr-Universitaet-Bochum. (2012, August 29). Turning chemistry inside-out: Self-assembling smart microscopic reagents to pioneer pourable electronics. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2012/08/120829064703.htm
Ruhr-Universitaet-Bochum. "Turning chemistry inside-out: Self-assembling smart microscopic reagents to pioneer pourable electronics." ScienceDaily. www.sciencedaily.com/releases/2012/08/120829064703.htm (accessed August 22, 2014).

Share This




More Matter & Energy News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Former TSA X-Ray Scanners Easily Tricked To Miss Weapons

Newsy (Aug. 21, 2014) — Researchers found the scanners could be duped simply by placing a weapon off to the side of the body or encasing it under a plastic shield. Video provided by Newsy
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins