Featured Research

from universities, journals, and other organizations

New genetic clues to why most bone marrow transplant patients develop graft-versus-host disease

Date:
September 4, 2012
Source:
Fred Hutchinson Cancer Research Center
Summary:
A team of scientists has shed new light on why most bone marrow transplant patients who receive tissue-matched cells from unrelated donors still suffer acute graft-versus-host disease (GVHD). The answer appears to lie in the discovery of previously undetected genetic differences in the DNA of patients and unrelated marrow donors.

A team of scientists led by a bone marrow transplant researcher at Fred Hutchinson Cancer Research Center has shed new light on why most bone marrow transplant patients who receive tissue-matched cells from unrelated donors still suffer acute graft-versus-host disease (GVHD). The answer appears to lie in the discovery of previously undetected genetic differences in the DNA of patients and unrelated marrow donors.

The laboratory-based study findings by Effie Petersdorf, M.D., and colleagues soon will be translated to the clinic when a Hutchinson Center transplant protocol -- the first of its kind -opens at Seattle Cancer Care Alliance later this year to test patients and donors for these genetic differences. The goal is to further refine the tissue-matching process to reduce the incidence of GVHD, which affects about 80 percent of patients and has been a longtime, vexing challenge for transplant doctors.

GVHD occurs when the donor immune system (the graft) begins to circulate in the patient's bloodstream and recognizes the host's (the patient's) tissue as foreign. When this happens, the new immune system attacks the recipient's tissues such as the liver, gastrointestinal system and skin.

Bone marrow and stem cell transplants are used to treat a variety of malignant blood diseases such as leukemia. Hematopoietic cell transplantation was pioneered at the Hutchinson Center in the 1970s and continues to be a major focus of research and clinical trials to improve survival and reduce side effects.

Published recently in Science Translational Medicine, the study details how researchers identified two specific single-nucleotide polymorphisms, also called SNPs (pronounced "snips"), within the major histocompatibility complex (MHC) in human DNA that are markers for either acute GVHD or disease-free survival. These markers are distinct from the human leukocyte antigens (HLA), found on the same chromosome as the MHC, that are traditionally used to match recipients and donors, a process called tissue typing.

Researchers found that if a patient and donor have different SNPs, the patient was at increased risk of GVHD or a lower chance of disease-free survival. The scientists surmised that genes located near these SNPs must be involved in that process.

"The question I wanted to ask with this study is whether there could be genes we don't know about that are located close to the major histocompatibility complex that could be influencing GVHD risk," said Petersdorf, a member of the Hutchinson Center's Clinical Research Division. "Now that we know what to test for we can begin screening for the presence of the SNPs in patients and donors and select the optimal donor whose SNP profile will benefit the patient the most."

SNP genotyping is only beneficial for patients when they have multiple matched unrelated donors in order to determine which donor is the optimal match. Fortunately, this is fairly common, according to the study. Of 230 patients who had two or more HLA-matched donors, significant percentages also had at least one donor who was SNP-matched.

A SNP is a base change that involves two or more of the four bases (A, C, T and G) that comprise DNA, and is the simplest form of DNA variation on the human genome. SNPs serve as signposts or markers for nearby genes that are the actual drivers for the effect that they have on disease.

The next step for researchers is to sequence the MHC region of genes close to the SNP locations in order to identify which genes are directly responsible for the correlations of survival and GVHD.

"Once we discover those genes we will characterize them and then we may be able to further refine donor matching," Petersdorf said.

For this study, researchers conducted a retrospective discovery-validation study that examined DNA from more than 4,000 former transplant patients nationwide. They studied 1,120 SNPs in the MHC on chromosome 6 -- the region where all tissue typing and immune function genes are densely packed. They narrowed those SNPs to two that appeared to correlate with disease-free survival and acute GVHD.

The National Institutes of Health funded the study. Researchers from the University of Washington; the Centers for International Blood and Marrow Transplant Research in Minneapolis, Minn., and Milwaukee, Wis.; and the Medical College of Wisconsin contributed to the study.


Story Source:

The above story is based on materials provided by Fred Hutchinson Cancer Research Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. E. W. Petersdorf, M. Malkki, T. A. Gooley, S. R. Spellman, M. D. Haagenson, M. M. Horowitz, T. Wang. MHC-Resident Variation Affects Risks After Unrelated Donor Hematopoietic Cell Transplantation. Science Translational Medicine, 2012; 4 (144): 144ra101 DOI: 10.1126/scitranslmed.3003974

Cite This Page:

Fred Hutchinson Cancer Research Center. "New genetic clues to why most bone marrow transplant patients develop graft-versus-host disease." ScienceDaily. ScienceDaily, 4 September 2012. <www.sciencedaily.com/releases/2012/09/120904121115.htm>.
Fred Hutchinson Cancer Research Center. (2012, September 4). New genetic clues to why most bone marrow transplant patients develop graft-versus-host disease. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2012/09/120904121115.htm
Fred Hutchinson Cancer Research Center. "New genetic clues to why most bone marrow transplant patients develop graft-versus-host disease." ScienceDaily. www.sciencedaily.com/releases/2012/09/120904121115.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins