Science News
from research organizations

In quest of the cosmic origins of silver: Silver and gold materialized in different stellar explosions

Date:
September 6, 2012
Source:
Heidelberg, Universität
Summary:
In the quest for the cosmic origins of heavy elements, a researcher has established that silver can only have materialized during the explosion of clearly defined types of star. These are different from the kind of stars producing gold when they explode. The evidence for this comes from the measurement of various high-mass stars with the help of which the stepwise evolution of the components of all matter can be reconstructed.
Share:
       
Total shares:  
FULL STORY

At the end of their lives, stars with ten times the mass of our sun explode as so-called supernovae. In the process, elements like silver are either hurled out into the universe or produced in the first place. The illustration is an artist’s impression of the first moments of such an explosion before the star is completely torn apart.
Credit: European Southern Observatory/ESO

In the quest for the cosmic origins of heavy elements, Heidelberg scientist Dr. Camilla Hansen has established that silver can only have materialised during the explosion of clearly defined types of star. These are different from the kind of stars producing gold when they explode. The evidence for this comes from the measurement of various high-mass stars with the help of which the stepwise evolution of the components of all matter can be reconstructed.

The findings from the investigations conducted by Dr. Hansen of Heidelberg University's Centre for Astronomy (ZAH) in conjunction with other scientists in Germany and fellow astronomers in Japan and Sweden have been published in the journal Astronomy & Astrophysics.

The lightweight elements hydrogen, helium and traces of lithium came into being a few minutes after the Big Bang. All heavier elements materialised later in the interior of stars or during star explosions, with each generation of stars contributing a little to enriching the universe with chemical elements. The elements a star can generate in its lifetime depend largely on its mass. At the end of their lives, stars about ten times the size of our sun explode as so-called supernovae, producing elements sometimes heavier than iron that are released by the explosion. Depending on how heavy the star originally was, silver and gold can also materialise in this way.

When various stars of the same mass explode, the ratio of elements generated and hurled out into the universe is identical. This constant relation is perpetuated in the subsequent generations of stars forming from the remnants of their predecessors. The investigations by Dr. Hansen and her associated scientists have now demonstrated that the amount of silver in the stars measured is completely independent of the amounts of other heavy elements like gold. These observations indicate clearly for the first time that during a supernova silver takes shape in an entirely different fusion process from that in which gold forms. Accordingly, the scientists contend that silver cannot have originated together with gold. The elements must have materialised from stars of different masses.

"This is the first incontrovertible evidence for a special fusion process taking place during the explosion of a star," says Dr. Hansen. "Up to now this had been mere speculation. After this discovery, we must now use simulations of these processes in supernova explosions to investigate more precisely when the conditions for the formation of silver are present. That way we can find out how heavy the stars were that could produce silver during their dramatic demise."


Story Source:

The above story is based on materials provided by Heidelberg, Universität. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. J. Hansen, F. Primas, H. Hartman, K.-L. Kratz, S. Wanajo, B. Leibundgut, K. Farouqi, O. Hallmann, N. Christlieb, H. Nilsson. Silver and palladium help unveil the nature of a second r-process. Astronomy & Astrophysics, 2012; 545: A31 DOI: 10.1051/0004-6361/201118643

Cite This Page:

Heidelberg, Universität. "In quest of the cosmic origins of silver: Silver and gold materialized in different stellar explosions." ScienceDaily. ScienceDaily, 6 September 2012. <www.sciencedaily.com/releases/2012/09/120906074025.htm>.
Heidelberg, Universität. (2012, September 6). In quest of the cosmic origins of silver: Silver and gold materialized in different stellar explosions. ScienceDaily. Retrieved May 22, 2015 from www.sciencedaily.com/releases/2012/09/120906074025.htm
Heidelberg, Universität. "In quest of the cosmic origins of silver: Silver and gold materialized in different stellar explosions." ScienceDaily. www.sciencedaily.com/releases/2012/09/120906074025.htm (accessed May 22, 2015).

Share This Page:


Space & Time News
May 22, 2015

Latest Headlines
updated 12:56 pm ET