Featured Research

from universities, journals, and other organizations

Genetically-engineered preclinical models predict pharmacodynamic response

Date:
September 19, 2012
Source:
University of North Carolina Health Care
Summary:
A new comparison of four different methodologies for pharmacokinetic and pharmacodynamic testing of the anti-melanoma agent carboplatin, demonstrates that genetically-engineered mouse models provide tumor delivery of drug most comparable to the response seen in melanoma patients.

New cancer drugs must be thoroughly tested in preclinical models, often in mice, before they can be offered to cancer patients for the first time in phase I clinical trials. Key components of this process include pharmacokinetic and pharmacodynamic studies, which evaluate how the drug acts on a living organism. These studies measure the pharmacologic response and the duration and magnitude of response observed relative to the concentration of the drug at an active site in the organism.

A new comparison of four different methodologies for pharmacokinetic and pharmacodynamic testing of the anti-melanoma agent carboplatin, demonstrates that genetically-engineered mouse models provide tumor delivery of drug most comparable to the response seen in melanoma patients.

"These studies are critically important in the case of small-molecule cancer drugs, which often have systemic side effects and can be toxic at high concentrations," said Ned Sharpless, MD, Wellcome Distinguished Professor of Cancer Research and study co-author.

The study, led by Bill Zamboni, PharmD and PhD, Associate Professor of Pharmacotherapy and Experimental Therapeutics at the UNC Eshelman School of Pharmacy and a member of UNC Lineberger Comprehensive Cancer Center, and Ned Sharpless, MD, who is also Associate Director for Translational Research at UNC Lineberger.

The collaborative study, which appears in The Oncologist, brought together a set of unique resources available at UNC to determine which preclinical models best predict delivery of carboplatin to melanoma tumors in patients. "We have a unique opportunity to evaluate an important factor in the treatment of solid tumors because of the outstanding collaborative nature and novel resources at UNC," said Zamboni.

"We have used a pharmacokinetics testing method called microdialysis, which uses a tiny probe to take samples that measure serial drug concentrations in a tumor over time," he added. "We plan to use this method to advance pharmacology studies of anticancer agents in tumors and tissues of patients and to evaluate the tumor delivery of nanoparticles and other classes of delivery agents."

The team used the resources of the preclinical phase I unit at UNC Lineberger to compare how pharmacokenetic levels vary in several preclinical tumor models including a genetically-engineered model, a model where tumor cells are transplanted to the appropriate part of the body (called an orthotopic syngeneic transplant or OST), and a xenograft model, where human tumor tissue is transplanted.

"Because carboplatin is widely used, we have good data on how the drug works pharmacokenetically in humans. For the first time, we were able to compare these various laboratory techniques used in countless labs and the pharmaceutical industry to evaluate how carboplatin was delivered to the tumor and compare it to actual human data. None of these laboratory models are perfect, but the genetically-engineered model is the best in terms of predicting the amount of drug that is delivered to the tumor in human patients," Zamboni added.

"We know that laboratory models are imperfectly predictive of human response and if the tumor models don't predict delivery, they are most likely not an optimal research tools," he noted.

Sharpless added, "We are continually looking for ways to build better laboratory models so that new therapies move from the lab to the patient as quickly and safely as possible. This study provides valuable validation that genetically-engineered models can help us accomplish this objective."


Story Source:

The above story is based on materials provided by University of North Carolina Health Care. Note: Materials may be edited for content and length.


Journal Reference:

  1. Austin J. Combest, Patrick J. Roberts, Patrick M. Dillon, Katie Sandison, Suzan K. Hanna, Charlene Ross, Sohrab Habibi, Beth Zamboni, Markus Mόller, Martin Brunner, Norman E. Sharpless, William C. Zamboni. Genetically Engineered Cancer Models, But Not Xenografts, Faithfully Predict Anticancer Drug Exposure in Melanoma Tumors. The Oncologist, September 19, 2012 DOI: 10.1634/theoncologist.2012-0274

Cite This Page:

University of North Carolina Health Care. "Genetically-engineered preclinical models predict pharmacodynamic response." ScienceDaily. ScienceDaily, 19 September 2012. <www.sciencedaily.com/releases/2012/09/120919125746.htm>.
University of North Carolina Health Care. (2012, September 19). Genetically-engineered preclinical models predict pharmacodynamic response. ScienceDaily. Retrieved October 19, 2014 from www.sciencedaily.com/releases/2012/09/120919125746.htm
University of North Carolina Health Care. "Genetically-engineered preclinical models predict pharmacodynamic response." ScienceDaily. www.sciencedaily.com/releases/2012/09/120919125746.htm (accessed October 19, 2014).

Share This



More Health & Medicine News

Sunday, October 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) — Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) — The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) — A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) — All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins